In this study, an axicon metalens comprising a large central disc surrounded by nanoposts for energy harvesting in composite metal-oxide semiconductor sensors was designed, fabricated, and experimentally characterized. The main role of the central disc is focusing light; the nanoposts of various diameters deflect light to form a Bessel-like beam. The spatial distribution of the optical transmission was measured using micro-hyperspectral imaging. The axicon metalens concentrates the light to the sensitive area of the sensor and also harvests light from adjacent pixels. After adding an axicon metalens, the normalized peak transmission is up to 250% at λ = 700 nm as compared to a blank TiO2 film. The experimental results had fair agreement with the finite-difference-time-domain simulation. The ultra-broadband energy-harvesting performance of the sensor suggests that it could be applied in surveillance and Internet of Things applications.
This paper presents a passive autofocus algorithm applicable to interferometric microscopes. The proposed algorithm uses the number of slope variations in an image mask to locate the focal plane (based on focus-inflection points) and identify the two neighboring planes at which fringes respectively appear and disappear. In experiments involving a Mirau objective lens, the proposed algorithm matched the autofocusing performance of conventional algorithms, and significantly outperformed detection schemes based on zero-order interference fringe in dealing with all kinds of surface blemish, regardless of severity. In experiments, the proposed algorithm also proved highly effective in cases without fringes.
This paper reports on the integration of a broadband light source with reflective optics to enable broadband UV confocal spectroscopy across a bandwidth of 250 nm to 1100 nm. This paper focuses on the performance of the confocal system and characteristic of AR-coated GRIN lens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.