H-ferritin is a core subunit of the iron storage protein ferritin, and is related to the pathogenesis of malignant diseases. A differential expressed sequence tag of the ferritin, heavy polypeptide 1 gene (FTH1) was obtained from our previously constructed suppression subtractive cDNA library from 3-day-old ducklings challenged with duck hepatitis virus type I (DHV-1). The expression and function of FTH1 in immune defense against infection remains largely unknown in ducks. In this study, the full-length duFTH1 cDNA was obtained using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. It consisted of 153 basepairs (bp) 5'untranslated region (UTR), 183 bp 3'UTR, and 546 bp open reading frame that encodes a single protein of 181 amino acid residues. duFTH1 shares high similarity with FTH1 genes from other vertebrates. The amino acid sequence possesses the conserved domain of typical ferritin H subunits, including seven metal ligands in the ferroxidase center, one iron binding region signature, and a potential bio-mineralization residue (Thy(29)). Moreover, in agreement with a previously reported ferritin H subunit, we identified an iron response element in the 5'UTR. RT-PCR analyses revealed duFTH1 mRNA is widely expressed in various tissues. Real-time quantitative polymerase chain reaction analyses suggested that duFTH1 mRNA is significantly up-regulated in the liver after DHV-1 injection or polyriboinosinic polyribocytidylic acid (polyI:C) treatment, reaching a peak 4 h post-infection, and dropping progressively and returning to normal after 24 h. Our findings suggest that duFTH1 functions as an iron chelating protein subunit in duck and contributes to the innate immune responses against viral infections.
This study was conducted to analyze the polymorphisms of chicken Toll-like receptors 4(TLR4) gene and aimed to provide a theoretical foundation for a further research on correlation between chicken TLR4 gene and disease resistance. Genetic variations at exon 2 of TLR4 gene in 14 chicken breeds and the red jungle fowl were detected by PCR-SSCP method and two alleles and three genotypes were found, Tibetan chicken and red jungle fowl only had BB genotype, while the others presented three genotypes of AA, BB and AB. Sequencing results showed two mutations, G114A and G142A, located at exon 2 of TLR4 gene. The results of Chi square test showed that all populations, except Xianju chicken, were in accordance with Hardy-Weinberg equilibrium at this locus (P > 0.05). According to analysis of population genetic variation, all the populations were at moderate polymorphism (0.25 < PIC < 0.5) except red jungle fowl and Tibetan chicken (PIC = 0). The study demonstrated that there were differences of normal anti-disease ability in Chinese indigenous chicken breeds and appeared no significant correlation with body size, product type and geographical location. The associated analysis of results showed that the SNPs of TLR4 gene in the study were not linked with potential major loci or genes affecting some resistant traits.
To investigate the association of avian apoVLDL-II gene polymorphism with body weight and fat, exactly 120 genetically fat (Anka) and lean (Rugao) chicken reared under the same environment and management were selected. Blood samples from the respective populations were taken for DNA extraction, and then slaughter for fat determination. Polymorphism was detected by PCR-RFLP and PCR-SSCP techniques. Gene frequency was non significantly different between population at VLDL6 and VLDL10 loci. However, in VLDL9 and VLDL17 loci the gene frequency was differed significantly (P<0.01) between populations. Polymorphism in apoVLDL-II gene was significantly (P<0.05) associated with body weight and fat weight at VLDL9 and VLDL17 loci in lean chicken. In addition, polymorphism of apoVLDL-II gene at VLDL6, VLDL9 and VLDL10 loci was significantly (P<0.05) associated with body weight and fat weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.