The proteasome is a highly conserved polycatalytic enzyme that is required for cellular processes and is widely present in the nucleus and cytoplasm of archaea, as well as all eukaryotes. A total of 22 members of the proteasome subunit (CiPS) gene family were identified and characterized by scanning the grass carp (Ctenopharyngodon idella) genome. These genes were classified into two subfamilies, CiPSA and CiPSB, based on phylogenetic analysis, which was consistent with the results from other species. We examined the response of this gene family to high density and saline-alkali stresses in aquaculture using publicly available transcriptome data resources. In grass carp, CiPS member transcripts were detected in all tested tissues, with the highest expression level in the head kidney and the lowest in the liver. According to transcriptome-based expression analysis, CiPS genes play a role in response to environmental stresses in grass carp, mainly in the form of negative regulation. Interestingly, a cluster of members belonging to the CiPSB subfamily on a 15 kb region on chromosome segment CI01000319, including CiPSB8, 9, 9b, and 10, showed marked responses to high density and saline-alkali stress. It appears that CiPS genes confer stress tolerance through the regulation of common genes, as well as specific genes. In summary, our genome-wide characterization, evolutionary, and transcriptomic analysis of CiPS genes in grass carp provides valuable information for characterizing the molecular functions of these genes and utilizing them to improve stress tolerance in aquaculture.
Background: The specific functions of PPP1R81 has been elucidated in multiple cancers; however, its role in lower-grade glioma (LGG) remains unknown. In this research, we inspected the specific role of PPP1R81 in LGG.  Methods: We totally evaluated the expression pattern and prognostic role of PPP1R81 in multitudinous tumors. Subsequently, we systematically examined the connection between PPP1R81 expression and prognosis, clinical characteristics, biological functions, genetic variations, and immunological characteristics in LGG according to The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Altas (CGGA) databases. In Vitro experiments were executed to inspect the expression level and specific roles of PPP1R81 in LGG.</p>  Results: PPP1R81 was elevated in multiple tumors and was tightly linked to a poor prognosis. LGG with higher expression of PPP1R81 showed poorer prognosis compared to lower expression of PPP1R81. The results of univariate and multivariate Cox regression analyses confirmed that the expression of PPP1R81 was an independent prognostic biomarker of LGG. Immune cell infiltration, immune checkpoint genes (ICPGs), copy number alterations (CNA), and tumor mutation burden (TMB) were also closely associated with PPP1R81 expression in LGG. In vitro experiments demonstrated that PPP1R81 was upregulated and closely interrelated with cell proliferation and cell cycle in LGG.</p>  Conclusion: PPP1R81 was an independent prognostic signature and underlying therapeutic target for patients with LGG.</p>
Background: The connection between m6A-assiociateed lncRNAs and prognosis has been demonstrated in multiple types of tumors. However, potential roles of m6A-assiociateed lncRNAs in glioma is still rare.  Methods: We implemented consensus cluster analysis to group the downloaded samples into two subtypes. The least absolute shrinkage and selection operator (LASSO) analysis was used to create a risk model. Additionally, the conjunction between m6A-related lncRNAs and immune cells infiltration was explored by conducting the R package. Ultimately, we inspected the underlying downstream pathways of the two subtypes by performing Gene Set Enrichment Analysis (GSEA). The expression level of m6A-connected lncRNAs in glioma were examined by conducting in vitro experiments.</p>  Results: We ascertained two subtypes of glioma in line with the consensus clustering of m6A-associated lncRNAs. We confirmed that age, grade, and IDH are related to the two subtypes. Additionally, the immune cells infiltration and immune checkpoint molecules of the two clusters were discussed. A risk signature including AL359643.3, AL445524.1, AL162231.2, AL117332.1, AP001486.2, POLR2J4, AC120036.4, LINC00641, LINC00900, CRNDE, and AL158212.3, was identified using the Cox regression and LASSO analyses. We also verified the prognostic value and discussed the immune cells infiltration and immune checkpoint molecules of the risk signature. In Vitro experiments verified that the m6A-associated lncRNAs was abnormally expressed in glioma.</p>  Conclusion: We elaborated the significant role of m6A-connected lncRNAs in glioma prognosis and immune infiltration and suggest that these key regulators may serve as underlying therapeutic targets to build up the efficacy of glioma immunotherapy.
Ship sturgeon (Acipenser nudiventris) is a critically endangered fish that is listed on the International Union for Conservation of Nature’s Red List of Threatened Species. Sixteen individuals from the Chinese section of the Ili River were genotyped using genome re-sequencing technology. By applying a genomic relatedness estimation with 1,527,694 genome-wide SNP markers, we found that the coancestry coefficients showed a high level of relatedness between individuals. The effective population sizes over 500 generations were estimated, and this showed that the effective population sizes began to dramatically decline from about 14,840 to 171 individuals when going back four generations from the current population. Artificial reproduction techniques guided by genomic relatedness may be a valuable approach to the conservation of this critically endangered fish species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.