The distribution of trade sizes and trading volumes are investigated based on the limit order book data of 22 liquid Chinese stocks listed on the Shenzhen Stock Exchange in the whole year 2003. We observe that the size distribution of trades for individual stocks exhibits jumps, which is caused by the number preference of traders when placing orders. We analyze the applicability of the "q-Gamma" function for fitting the distribution by the Cramér-von Mises criterion. The empirical PDFs of trading volumes at different timescales ∆t ranging from 1 min to 240 min can be well modeled. The applicability of the q-Gamma functions for multiple trades is restricted to the transaction numbers ∆n 8. We find that all the PDFs have power-law tails for large volumes. Using careful estimation of the average tail exponents α of the distribution of trade sizes and trading volumes, we get α > 2, well outside the Lévy regime.
We study the dynamics of order flows around large intraday price changes using ultra-high-frequency data from the Shenzhen Stock Exchange. We find a significant reversal of price for both intraday price decreases and increases with a permanent price impact. The volatility, the volume of different types of orders, the bid-ask spread, and the volume imbalance increase before the extreme events and decay slowly as a power law, which forms a wellestablished peak. The volume of buy market orders increases faster and the corresponding peak appears earlier than for sell market orders around positive events, while the volume peak of sell market orders leads buy market orders in the magnitude and time around negative events. When orders are divided into four groups according to their aggressiveness, we find that the behaviors of order volume and order number are similar, except for buy limit orders and canceled orders that the peak of order number postpones two minutes later after the peak of order volume, implying that investors placing large orders are more informed and play a central role in large price fluctuations. We also study the relative rates of different types of orders and find differences in the dynamics of relative rates between buy orders and sell orders and between individual investors and institutional investors. There is evidence showing that institutions behave very differently from individuals and that they have more aggressive strategies. Combing these findings, we conclude that institutional investors are more informed and play a more influential role in driving large price fluctuations.Submitted to: New J. Phys.
There is convincing evidence showing that the probability distributions of stock returns in mature markets exhibit power-law tails and both the positive and negative tails conform to the inverse cubic law. It supports the possibility that the tail exponents are universal at least for mature markets in the sense that they do not depend on stock market, industry sector, and market capitalization. We investigate the distributions of intraday returns at different time scales ( Δt=1, 5, 15, and 30 min) of all the A-share stocks traded in the Chinese stock market, which is the largest emerging market in the world. We find that the returns can be well fitted by the q-Gaussian distribution and the tails have power-law relaxations with the exponents increasing with Δt and being well outside the Lévy stable regime for individual stocks. We provide statistically significant evidence showing that, at small time scales Δt<15 min, the exponents logarithmically decrease with the turnover rate and increase with the market capitalization. When Δt>15 min, no conclusive evidence is found for a possible dependence of the tail exponent on the turnover rate or the market capitalization. Our findings indicate that the intraday return distributions at small time scales are not universal in emerging stock markets but might be universal at large time scales.
Abstract. -The relaxation dynamics of aftershocks after large volatility shocks are investigated based on two high-frequency data sets of the Shanghai Stock Exchange Composite (SSEC) index. Compared with previous relevant work, we have defined main financial shocks based on large volatilities rather than large crashes. We find that the occurrence rate of aftershocks with the magnitude exceeding a given threshold for both daily volatility (constructed using 1-minute data) and minutely volatility (using intra-minute data) decays as a power law. The power-law relaxation exponent increases with the volatility threshold and is significantly greater than 1. Taking financial volatility as the counterpart of seismic activity, the power-law relaxation in financial volatility deviates remarkably from the Omori law in Geophysics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.