High strength and high conductivity Cu-based materials are key requirements in high-speed railway and high-field magnet systems. Cu-Fe alloys represent one of the most promising candidates due to the cheapness of Fe compared to Cu-Ag and Cu-Nb alloys. The high strength of Cu-Fe alloys primarily relies on the high density of the Cu/Fe phase interface, which is controlled by the co-deformation of the Cu matrix and Fe phase. In this study, our main attention was focused on the deformation behavior of the Fe phase using different scales. Cu-2.5% Fe-0.2% Cr (in weight) and Cu-6% Fe alloys were cast, annealed, and cold drawn into wires to investigate their microstructure and properties evolution. Cu-6% Fe contains Cu matrix and Fe, which become the primary particles in the micrometer scale after solution treatment. Cu-2.5% Fe-0.2% Cr contains Cu matrix and Fe precipitate particles in a nanometer scale after solution and aging treatment. The Fe primary particles were elongated and evolved into ribbons in a nanometer scale while the Fe precipitate particles were hardly deformed even at a drawing strain of 6. The reason for the unchanging characteristics of Fe precipitate particles is due to the size effect and incoherent phase interface of Cu matrix and Fe precipitate particles. The strength of both Cu-6% Fe and Cu-2.5% Fe-0.2% Cr alloys increases with the increase in the drawing strain. The electrical resistivity of Cu-6% Fe gradually increases and that of Cu-2.5% Fe-0.2% Cr keeps almost constant with the increase in the drawing strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.