Accurate perception of the detected terrain is a precondition for the planetary rover to perform its own mission. However, terrain measurement based on vision and LIDAR is subject to environmental changes such as strong illumination and dust storms. In this paper, considering the influence of uncertainty in the detection process, a vibration/gyro coupled terrain estimation method based on multipoint ranging information is proposed. The terrain update model is derived by analyzing the measurement uncertainty and motion uncertainty. Combined with Clearpath Jackal unmanned vehicle—the terrain mapping accuracy test based on ROS (Robot Operating System) simulation environment—indoor Optitrack auxiliary environment and outdoor soil environment was completed. The results show that the proposed algorithm has high reconstruction ability for a given scale terrain. The reconstruction accuracy in the above test environments is within 1 cm, 2 cm, and 6 cm, respectively.
Purpose The purpose of this paper is to improve the efficiency of on-orbit operations through the top-level task design based on DoDAF. Based on the existing upper stage rocket technology, orbit transfer vehicles (OTVs) have developed rapidly in recent years. However, the lack of decision guidance based on overall task analysis requires integrating top-level analysis and bottom-level execution to achieve the smooth development of full-process tasks. Design/methodology/approach Using the Department of Defense Architecture Framework (DoDAF) as a reference, this paper performs the top-level mission analysis modeling of the on-orbit rendezvous and capture of the OTV. Moreover, the typical operational view products are obtained, and the cooperative relations among the mission requirements, the system requirements, and the functional requirements are also analyzed. Findings The results show that the attitude of the OTV changes violently during the maneuver and rendezvous phases. In addition, the view products can be optimized based on the results. Originality/value The proposed DoDAF-based on-orbit task integration analysis method achieves the effective fusion of high-level analysis and bottom-level execution of OTV on-orbit rendezvous and capture task through the top-level task modeling, operation view generation and task relationship analysis. According to the requirements and constraints of the on-orbit rendezvous and capture task, the control instructions of the vehicle are efficiently generated under the DoDAF framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.