The recent advances in 60-GHz radios have called for the parallel development of compact and efficient millimeter-wave antennas. This brief addresses for the first time the design, fabrication, and characterization of on-chip inverted-F and quasi-Yagi antennas for 60-GHz radios. The design was made using the Zeland IE3D software package. The fabrication was realized with the back-end-of-line process of silicon substrates of low resistivity 10 cm. The characterization was conducted on wafer with Cascade Microtech coplanar probes and an HP8510XF network analyzer. The results show that the inverted-F antenna achieved a minimum return loss of 32 dB and a gain of 19 dBi at 61 GHz; while the quasi-Yagi antenna achieved a minimum return loss of 6.75 dB and a gain of 12 5 dBi at 65 GHz. Good agreement has been observed between the measured and simulated results.
White light-emitting InGaN∕GaN diode with an InGaN underlying layer grown on the (0001) sapphire substrate was fabricated by low pressure metal-organic vapor phase epitaxy. The electroluminescence measurements show that the emitted white light is composed of blue and yellow lights, centered at around 440 and 570nm, respectively, for an injection current of 20mA. Cross-sectional transmission electron microscopy reveals that In-rich quantum dots were formed in InGaN wells due to phase separation of indium. It is suggested that the yellow and blue lights come from In-rich quantum dots and the low-indium regions, respectively, in InGaN quantum wells.
A new method for prolidase (PLD, EC 3.4.13.9) activity assay was developed based on the determination of proline produced from enzymatic reaction through capillary electrophoresis (CE) with tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)3(2+)] electrochemiluminescence detection (ECL). A detection limit of 12.2 fmol (S/N = 3) for proline, corresponding to 1.22 x 10(-8) units of prolidase catalyzing for 1 min was achieved. PLD activity determined by CE-ECL method was in agreement with that obtained from the classical Chinard's one. CE-ECL showed its powerful resolving ability and selectivity as no sample pretreatment was needed and no interference existed. The clinical utility of this method was successfully demonstrated by its application to assay PLD activity in the serum of diabetic patients in order to evaluate collagen degradation in diabetes mellitus (DM). The results indicated that enhanced collagen degradation occurred in DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.