A major resistance mechanism in Gram-negative bacteria
is the production
of β-lactamase enzymes. Originally recognized for their ability
to hydrolyze penicillins, emergent β-lactamases can now confer
resistance to other β-lactam drugs, including both cephalosporins
and carbapenems. The emergence and global spread of β-lactamase-producing
multi-drug-resistant “superbugs” has caused increased
alarm within the medical community due to the high mortality rate
associated with these difficult-to-treat bacterial infections. To
address this unmet medical need, we initiated an iterative program
combining medicinal chemistry, structural biology, biochemical testing,
and microbiological profiling to identify broad-spectrum inhibitors
of both serine- and metallo-β-lactamase enzymes. Lead optimization,
beginning with narrower-spectrum, weakly active compounds, provided 20 (VNRX-5133, taniborbactam), a boronic-acid-containing pan-spectrum
β-lactamase inhibitor. In vitro and in vivo studies demonstrated
that 20 restored the activity of β-lactam antibiotics
against carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae. Taniborbactam is the
first pan-spectrum β-lactamase inhibitor to enter clinical development.
Aeromonas veronii is a pathogen capable of infecting humans, livestock and aquatic animals, resulting in serious economic losses. In this study, two recombinant Lactobacillus casei expressing flagellin A (FlaA) of A. veronii, Lc-pPG-1-FlaA (surface-displayed) and Lc-pPG-2-FlaA (secretory) were constructed. The immune responses in fish administered with recombinant L. casei were evaluated. The two recombinant L. casei were orally administered to common carp, which stimulated high serum IgM and induced higher ACP, AKP, SOD and LYZ activity. Using qRT-PCR, the expression of IL-10, IL-8, IL-1β, TNF-α and IFN-γ in the tissue of fish immunized with recombinant L. casei was significantly (p < 0.05) upregulated, which indicated that recombinant L. casei could activate the innate immune system to trigger the cell immune response and inflammatory response. Furthermore, recombinant L. casei was able to survive the intestinal environment and colonize in intestine mucosal. The study showed that after being challenged by A. veronii, fish administered with Lc-pPG-1-FlaA (70%) and Lc-pPG-2-FlaA (50%) had higher survival rates compared to Lc-pPG and PBS, indicating that recombinant L. casei might prevent A. veronii infection by activating the immune system to trigger immune responses. We demonstrated that flagellin as an antigen of vaccine, is acceptable for preventing A. veronii infection in fish. The recombinant L. casei expressing FlaA may be a novel mucosal vaccine for treating and controlling A. veronii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.