PurposeThis study aims to evaluate the performance of four artificial intelligence‐aided diagnostic systems in identifying and measuring four types of pulmonary nodules.MethodsFour types of nodules were implanted in a commercial lung phantom. The phantom was scanned with multislice spiral computed tomography, after which four systems (A, B, C, D) were used to identify the nodules and measure their volumes.ResultsThe relative volume error (RVE) of system A was the lowest for all nodules, except for small ground glass nodules (SGGNs). System C had the smallest RVE for SGGNs, −0.13 (−0.56, 0.00). In the Bland–Altman test, only systems A and C passed the consistency test, P = 0.40. In terms of precision, the miss rate (MR) of system C was 0.00% for small solid nodules (SSNs), ground glass nodules (GGNs), and solid nodules (SNs) but 4.17% for SGGNs. The comparable system D MRs for SGGNs, SSNs, and GGNs were 71.30%, 25.93%, and 47.22%, respectively, the highest among all the systems. Receiver operating characteristic curve analysis indicated that system A had the best performance in recognizing SSNs and GGNs, with areas under the curve of 0.91 and 0.68. System C had the best performance for SGGNs (AUC = 0.91).ConclusionAmong four types nodules, SGGNs are the most difficult to recognize, indicating the need to improve higher accuracy and precision of artificial systems. System A most accurately measured nodule volume. System C was most precise in recognizing all four types of nodules, especially SGGN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.