The main function of red blood cells (RBCs) is to circulate oxygen and carbon dioxide throughout the human body. Accurate modeling of the transportation mechanism of RBCs inside microvessels will lead to better clinical diagnosis and prophylaxis of blood disease. This study combined hydrodynamics and basic circuit theory to model the fluid mechanisms of the circulation of blood cells inside capillaries. The variations of physical properties inside the capillaries due to clogging by RBCs were analyzed. A lab-on-a-chip for RBC deformability diagnosis was fabricated using soft lithography. Real experiments were conducted to verify the theoretical analysis and illustrated the capability of the device which was able to observe pathological changes in RBC deformability. The proposed device could be a convenient tool in the field of blood rheology and clinical applications
The main function of red blood cells (RBCs) is to circulate oxygen and carbon dioxide throughout the human body. Accurate modeling of the transportation mechanism of RBCs inside microvessels will lead to better clinical diagnosis and prophylaxis of blood disease. This study combined hydrodynamics and basic circuit theory to produce a model and calculate the fluid mechanisms of the circulation of blood cells inside microvessels. The variations of physical properties inside the microvessels due to clogging by RBCs were analyzed. A lab-on-a-chip for RBC diagnosis was fabricated using soft lithography. Real experiments were conducted to verify the theoretical analysis and illustrate the capability of the device which was able to detect pathological changes in RBC deformability. The proposed device could be a convenient tool in the field of blood rheology and clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.