Abstract-The discrete fractional Fourier transform is a powerful signal processing tool with broad applications for nonstationary signals. In this paper, we propose a sparse discrete fractional Fourier transform (SDFrFT) algorithm to reduce the computational complexity when dealing with large data sets that are sparsely represented in the fractional Fourier domain. The proposed technique achieves multicomponent resolution in addition to its low computational complexity and robustness against noise. In addition, we apply the SDFrFT to the synchronization of high dynamic direct-sequence spread-spectrum signals. Furthermore, a sparse fractional cross ambiguity function (SFrCAF) is developed, and the application of SFrCAF to a passive coherent location system is presented. The experiment results confirm that the proposed approach can substantially reduce the computation complexity without degrading the precision.Index Terms-Cross ambiguity function, global positioning system, passive bistatic radar, sparse discrete fractional Fourier transform.
The ZiYuan‐3 surveying satellite (ZY‐3), launched on 9th January 2012, is China's first civilian high‐resolution stereo mapping satellite. To ensure the mapping accuracy of ZY‐3, considerable research has been conducted since its launch on the calibration and validation of its three‐line array charge‐coupled device (CCD) sensors (TLC sensors). Its dynamic exterior systematic errors (such as camera installation errors) and static interior distortion were eliminated using 1:2000 digital orthophotomaps and digital elevation models (DEMs) of the Dengfeng (Henan) and Tianjin areas of China as control data. Various CCD alignment calibration models were compared, on the basis of their geometric accuracy after calibration, to determine the optimal model. Finally, validation experiments were performed using ZY‐3 TLC images and ground control points (GCPs) collected over Anping in Hebei Province, Zhaodong in Heilongjiang Province and the Taihang Mountain area in China. The positioning accuracy attained its theoretical value over the Anping and Zhaodong areas. Using GCPs whose image coordinates were obtained manually, the plan and height accuracy were found to be better than 3 m and 2 m, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.