(-)-Epigallocatechin-3-O-gallate(EGCG), the highest catechins from green tea, has promisingly been found to sensitize the efficacy of several chemotherapy agents like doxorubicin (DOX) in hepatocellular carcinoma (HCC) treatment. However, the detailed mechanisms by which EGCG augments the chemotherapeutic efficacy remain unclear. Herein, this study was designed to determine the synergistic impacts of EGCG and DOX on hepatoma cells and particularly to reveal whether the autophagic flux is involved in this combination strategy for the HCC. Electron microscopy and fluorescent microscopy confirmed that DOX significantly increased autophagic vesicles in hepatoma Hep3B cells. Western blot and trypan blue assay showed that the increasing autophagy flux by DOX impaired about 45% of DOX-induced cell death in these cells. Conversely, both qRT-PCR and western blotting showed that EGCG played dose-dependently inhibitory role in autophagy signaling, and that markedly promoted cellular growth inhibition. Amazingly, the combined treatment caused a synergistic effect with 40 to 60% increment on cell death and about 45% augmentation on apoptosis versus monotherapy pattern. The DOX-induced autophagy was abolished by this combination therapy. Rapamycin, an autophagic agonist, substantially impaired the anticancer effect of either DOX or combination with EGCG treatment. On the other hand, using small interference RNA targeting chloroquine autophagy-related gene Atg5 and beclin1 to inhibit autophagy signal, hepatoma cell death was dramatically enhanced. Furthermore, in the established subcutaneous Hep3B cells xenograft tumor model, about 25% reduction in tumor growth as well as 50% increment of apoptotic cells were found in combination therapy compared with DOX alone. In addition, immunohistochemistry analysis indicated that the suppressed tendency of autophagic hallmark microtubule-associated protein light chain 3 (LC3) expressions was consistent with thus combined usage in vitro. Taken together, the current study suggested that EGCG emerges as a chemotherapeutic augmenter and synergistically enhances DOX anticancer effects involving autophagy inhibition in HCC.
l- to d-residue isomerization is a post-translational modification (PTM) present in neuropeptides, peptide hormones, and peptide toxins from several animals. In most cases, the d-residue is critical for the biological function of the resulting d-amino acid-containing peptide (DAACP). Here, we provide an example in native neuropeptides in which the DAACP and its all-l-amino acid epimer are both active at their newly identified receptor and at a neuronal target associated with feeding behavior. On the basis of sequence similarity to a known DAACP from cone snail venom, we hypothesized that allatotropin-related peptide (ATRP), a neuropeptide from the neuroscience model organism, may form multiple diastereomers in the central nervous system. We determined that ATRP exists as a d-amino acid-containing peptide (d2-ATRP) and identified a specific G protein-coupled receptor as an ATRP receptor. Interestingly, unlike many previously reported DAACPs and their all-l-residue analogs, both l-ATRP and d2-ATRP were potent agonists of this receptor and active in electrophysiological experiments. Finally, d2-ATRP was much more stable than its all-l-residue counterpart in plasma, suggesting that in the case of ATRP, the primary role of the l- to d-residue isomerization may be to protect this peptide from aminopeptidase activity in the extracellular space. Our results indicate that l- to d-residue isomerization can occur even in an all-l-residue peptide with a known biological activity and that in some cases, this PTM may help modulate peptide signal lifetime in the extracellular space rather than activity at the cognate receptor.
Neuropeptides in several animals undergo an unusual post-translational modification, the isomerization of an amino acid residue from the l-stereoisomer to the d-stereoisomer. The resulting d-amino acid-containing peptide (DAACP) often displays biological activity higher than that of its all-l-residue analogue, with the d-residue being critical for function in many cases. However, little is known about the full physiological roles played by DAACPs, and few studies have examined the interaction of DAACPs with their cognate receptors. Here, we characterized the signaling of several DAACPs derived from a single neuropeptide prohormone, the Aplysia californica achatin-like neuropeptide precursor (apALNP), at their putative receptor, the achatin-like neuropeptide receptor (apALNR). We first used quantitative polymerase chain reaction and in situ hybridization experiments to demonstrate receptor (apALNR) expression throughout the central nervous system; on the basis of the expression pattern, we identified novel physiological functions that may be mediated by apALNR. To gain insight into ligand signaling through apALNR, we created a library of native and non-native neuropeptide analogues derived from apALNP (the neuropeptide prohormone) and evaluated them for activity in cells co-transfected with apALNR and the promiscuous Gα subunit Gα-16. Several of these neuropeptide analogues were also evaluated for their ability to induce circuit activity in a well-defined neural network associated with feeding behavior in intact ganglia from Aplysia. Our results reveal the specificity of apALNR and provide strong evidence that this receptor mediates diverse physiological functions throughout the central nervous system. Finally, we show that some native apALNP-derived DAACPs exhibit enhanced stability toward endogenous proteases, suggesting that the d-residues in these DAACPs may increase the peptide lifetime, in addition to influencing receptor specificity, in the nervous system. Ultimately, these studies provide insight into signaling at one of the few known DAACP-specific receptors and advance our understanding of the roles that l- to d-residue isomerization play in neuropeptide signaling.
We herein report the structural optimization and structure–activity relationship studies of 5-(2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives as a new class of receptor-interacting protein kinase 1 (RIPK1) inhibitors. Among all obtained RIPK1 inhibitors, 1-(5-{4-amino-7-ethyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl}-2,3-dihydro-1H-indol-1-yl)-2-[3-(trifluoromethoxy)phenyl]ethan-1-one (22b) is the most active one. This compound potently inhibited RIPK1 with a binding affinity (K D) of 0.004 μM and an enzymatic IC50 value of 0.011 μM and also showed good kinase selectivity. It could efficiently protect cells from necroptosis and attenuate the necrotic cell death of vascular endothelial cells induced by tumor cells both in vitro and in vivo. Importantly, compound 22b exhibited excellent antimetastasis activity in the experimental B16 melanoma lung metastasis model. It also displayed favorable pharmacokinetic properties. Collectively, 22b could be a promising agent for preventing tumor metastasis.
The present studies were initiated to determine in greater molecular detail how MEK1/2 inhibitors [PD184352 and AZD6244 (ARRY-142886)] interact with UCN-01 (7-hydroxystaurosporine) to kill mammary carcinoma cells in vitro and radiosensitize mammary tumors in vitro and in vivo and whether farnesyl transferase inhibitors interact with UCN-01 to kill mammary carcinoma cells in vitro and in vivo. Expression of constitutively activated MEK1 EE or molecular suppression of JNK and p38 pathway signaling blocked MEK1/2 inhibitor and UCN-01 lethality, effects dependent on the expression of BAX, BAK, and, to a lesser extent, BIM and BID. In vitro colony formation studies showed that UCN-01 interacted synergistically with the MEK1/2 inhibitors PD184352 or AZD6244 and the farnesyl transferase inhibitors FTI277 and R115,777 to kill human mammary carcinoma cells. Athymic mice carrying f100 mm 3 MDA-MB-231 cell tumors were subjected to a 2-day exposure of either vehicle, R115,777 (100 mg/kg), the MEK1/2 inhibitor PD184352 (25 mg/kg), UCN-01 (0.2 mg/kg), or either of the drugs in combination with UCN-01. Transient exposure of tumors to R115,777, PD184352, or UCN-01 did not significantly alter tumor growth rate or the mean tumor volume in vivo f15 to 30 days after drug administration. In contrast, combined treatment with R115,777 and UCN-01 or with PD184352 and UCN-01 significantly reduced tumor growth. Tumor cells isolated after combined drug exposure exhibited a significantly greater reduction in plating efficiency using ex vivo colony formation assays than tumor cells that were exposed to either drug individually. Irradiation of mammary tumors after drug treatment, but not before or during treatment, significantly enhanced the lethal effects of UCN-01 and MEK1/2 inhibitor treatment. These findings argue that UCN-01 and multiple inhibitors of the RAS-MEK pathway have the potential to suppress mammary tumor growth, and to interact with radiation, in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.