The question of whether the human brain is an anatomical site of persistent HIV-1 infection during suppressive antiretroviral therapy (ART) is critical, but remains unanswered. The presence of virus in the brains of HIV patients whose viral load is effectively suppressed would demonstrate not only the potential for CNS to act as an anatomical HIV reservoir, but also the urgent need to understand the factors contributing to persistent HIV behind the blood-brain barrier. Here, we investigated for the first time the presence of cells harboring HIV DNA and RNA in the brains from subjects with undetectable plasma viral load and sustained viral suppression, as identified by the National NeuroAIDS Tissue Consortium. Using new, highly sensitive in situ hybridization techniques, RNAscope and DNAscope, in combination with immunohistochemistry, we were able to detect HIV-1 in the brains of all virally suppressed cases and found that brain macrophages and microglia, but not astrocytes, were the cells harboring HIV DNA in the brain. This study demonstrated that HIV reservoirs persist in brain macrophages/microglia during suppressive ART, which cure/treatment strategies will need to focus on targeting.
Multiple studies suggest that plasmacytoid dendritic cells (pDCs) are depleted and dysfunctional during human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but little is known about pDCs in the gut-the primary site of virus replication. Here, we show that during SIV infection, pDCs were reduced 3--fold in the circulation and significantly upregulated the gut-homing marker α4β7, but were increased 4-fold in rectal biopsies of infected compared to naive macaques. These data revise the understanding of pDC immunobiology during SIV infection, indicating that pDCs are not necessarily depleted, but instead may traffic to and accumulate in the gut mucosa.
Objective This report presents tenofovir alafenamide (TAF) and elvitegravir (EVG) fabricated into nanoparticles (NPs) for subcutaneous (SubQ) delivery as prevention strategy. Design Prospective prevention study in hu-BLT mice. Methods Using an oil-in-water emulsion solvent evaporation technique, TAF+EVG drugs were entrapped together into NPs containing poly(lactic-co-glycolic acid) (PLGA). In vitro prophylaxis studies (IC90) compared NPs to drugs in solution. Humanized-BLT (n=5/group) mice were given 200 mg/kg SubQ, and vaginally challenged with HIV-1 (5×105 TCID50) 4 and 14 days (d) post-NP administration (PI). Control mice (n=5) were challenged at 4 d. Weekly plasma viral load (pVL) was performed using RT-PCR. Hu-BLT mice were sacrificed and lymph nodes were harvested for HIV-1 viral RNA detection by in situ hybridization (ISH). In parallel, CD34+ humanized mice (3/time point) compared tenofovir (TFV) and EVG drug levels in vaginal tissues from NPs and solution. TFV and EVG were analyzed from tissue using LC-MS/MS. Results TAF+EVG NPs were < 200 nm in size. In-vitro prophylaxis indicates TAF+EVG NPs IC90 was 0.002 μg/mL and TAF+EVG solution was 0.78 μg/mL. TAF+EVG NPs demonstrated detectable drugs for 14 days and 72 h for solution, respectively. All Hu-BLT control mice became infected within 14 d after HIV-1 challenge. In contrast, hu-BLT mice that received NPs and challenged at 4 d PI, 100% were uninfected, and 60% challenged at 14 d PI were uninfected (p = 0.007; Mantel-Cox test). ISH confirmed these results. Conclusions This proof-of-concept study demonstrated sustained protection for TAF+EVG NPs in a hu-BLT mouse model of HIV vaginal transmission.
Lack of an effective small-animal model to study the Kaposi's sarcoma-associated herpesvirus (KSHV) infection in vivo has hampered studies on the pathogenesis and transmission of KSHV. The objective of our study was to determine whether the humanized BLT (bone marrow, liver, and thymus) mouse (hu-BLT) model generated from NOD/SCID/IL2rγ mice can be a useful model for studying KSHV infection. We have tested KSHV infection of hu-BLT mice via various routes of infection, including oral and intravaginal routes, to mimic natural routes of transmission, with recombinant KSHV over a 1-or 3-mo period. Infection was determined by measuring viral DNA, latent and lytic viral transcripts and antigens in various tissues by PCR, in situ hybridization, and immunohistochemical staining. KSHV DNA, as well as both latent and lytic viral transcripts and proteins, were detected in various tissues, via various routes of infection. Using double-labeled immune-fluorescence confocal microscopy, we found that KSHV can establish infection in human B cells and macrophages. Our results demonstrate that KSHV can establish a robust infection in the hu-BLT mice, via different routes of infection, including the oral mucosa which is the most common natural route of infection. This hu-BLT mouse not only will be a useful model for studying the pathogenesis of KSHV in vivo but can potentially be used to study the routes and spread of viral infection in the infected host. T he Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), also known as the human herpesvirus 8, was first identified from KS tissues in 1994 (1). It is the etiologic agent for KS and is also associated with primary effusion lymphoma (PEL) and multicentric Castleman's disease (2). More recently it was also found to be associated with KSHV-associated inflammatory cytokine syndrome (3). Although substantial progress has been made in characterizing the virus, there are still many unanswered questions such as how KSHV infection can lead to disease manifestation and whether latent or lytic induction of KSHV are associated with malignancies. One of the reasons is a lack of a good small-animal model to study KSHV infection in vivo, which has hampered studies on how KSHV infects, spreads, and how it interacts with the host and ultimately leads to disease pathogenesis. Moreover, currently there is no vaccine against KSHV infection, and there is need for an effective animal model to evaluate the efficacy of vaccines if they are developed and for the testing of antiviral regimens.An ideal model should have relatively short generation time, reproduce rapidly, be inexpensive to maintain and house, and be easy to manipulate. An example is a rodent model that can be infected by KSHV effectively. Several small-rodent models have been tested for KSHV infection. The models include transplantation with both human KSHV-infected B lymphoma cells and primary human peripheral blood mononuclear cells in the SCID mouse (4), injection of KSHV into the human skin engrafted or the transplant of the SCID mice...
Heart failure, a leading cause of death in humans, can emanate from myocarditis. Although most individuals with myocarditis recover spontaneously, some develop chronic dilated cardiomyopathy. Myocarditis may result from both infectious and noninfectious causes, including autoimmune responses to cardiac antigens. In support of this notion, intracellular cardiac antigens, like cardiac myosin heavy chain-a, cardiac troponin-I, and adenine nucleotide translocator 1 (ANT 1 ), have been identified as autoantigens in cardiac autoimmunity. Herein, we demonstrate that ANT 1 can induce autoimmune myocarditis in A/J mice by generating autoreactive T cells. We show that ANT 1 encompasses multiple immunodominant epitopes (namely, ANT 1 21-40, ANT 1 31-50, ANT 1 171-190, and ANT 1 181-200). Although all four peptides induce comparable T-cell responses, only ANT 1 21-40 was found to be a major myocarditogenic epitope in immunized animals. The myocarditis-inducing ability of ANT 1 21-40 was associated with the generation of T cells producing predominantly IL-17A, and the antigen-sensitized T cells could transfer the disease to naïve recipients. These data indicate that cardiac mitochondrial proteins can be target autoantigens in myocarditis, supporting the notion that the antigens released as a result of primary damage may contribute to the persistence of chronic inflammation through autoimmunity. Myocarditis can occur as a result of exposure to various infectious and noninfectious insults, but does not generally lead to a fatal outcome (ie, most affected individuals can recover spontaneously). However, a proportion of those affected can develop dilated cardiomyopathy (DCM). Estimates indicate that approximately half of DCM patients undergo heart transplantation because of a lack of alternative therapeutic options.1e3 Furthermore, several clinical studies suggest that DCM patients can have autoantibodies to several cardiac antigens, including adenine nucleotide translocator (ANT).4e6 Because DCM can arise as a sequel to myocarditis, it has been postulated that autoimmune response may be an underlying mechanism in its pathogenesis. 7ANT exists in multiple isoforms, all four of which are expressed in humans (ANT 1 , ANT 2 , ANT 3 , and ANT 4 ), but only three in mice (ANT 1 , ANT 2 , and ANT 4 ). ANT 1 is expressed in muscle tissues (heart and skeletal) and the brain, ANT 2 can be expressed in liver, kidney, and heart, and ANT 4 expression is restricted to the testes in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.