Sequential upflow anaerobic filter (UAF)/air lift (ALR) reactors were employed to investigate the effects of hydraulic retention time (HRT) and nitrobenzene (NB) concentration on treatment of NB-containing wastewater. The results showed that NB was effectively reduced to aniline (AN) with glucose as co-substrate in the UAF reactor. The AN and the remaining intermediates after the UAF reactor were then efficiently degraded in the ALR reactor. A removal efficiency of 100% and 96% was obtained for NB and chemical oxygen demand (COD), respectively, using sequential UAF/ALR reactors with an HRT of 8-72 h in the UAF reactor and 2-18 h in the ALR reactor. The corresponding optimal influent NB concentration varied between 100 and 400 mg l(-1) to achieve the optimal NB and COD removal. The NB removal efficiency decreased to 90% and to 97% if the HRT in the UAF reactor decreased from 8 to 2 h and the influent NB concentration increased from 400 to 800 mg l(-1), respectively. The results showed that sequential UAF/ALR system can be operated at low HRTs and high NB concentrations without significantly affecting the removal efficiency of NB in the reactor system. The UAF/ALR system can provide an effective yet low cost method for treatment of NB-containing industrial wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.