Development of ceramic phosphors (CPs) featuring small volume and high efficacy is crucial for miniaturization of white LEDs and their integration in solid state lighting. In this study, the chip-level 2.5×2.5 mm Ce:GdYAG CPs with different thicknesses were packaged to the blue chips, and their luminous characteristics were analyzed under the different radiant flux. Notably, when thickness of the CPs was 1.4 mm, a luminous flux of 2000 lm, a correlated color temperature (CCT) of 6266 K and a color rendering index (CRI) of 70 were obtained under 11.0 W blue power (1.76 W/mm2) excitation. Phenomenon of colorimetric drift was explained simultaneously. These results indicate that Ce:GdYAG CPs is a promising candidate for automotive lighting and high-speed rail lighting.
The discovery of single structure Ce3+ doped garnet transparent ceramics (TCs) with a broad full width at half maximum (FWHM) is essential to realize a high CRI for high-power white light emitting diodes (LEDs) and laser diodes (LDs). In this work, by utilizing the ion substitution engineering strategy, pure phase Gd3Sc2Al3O12:Ce3+ (GSAG:Ce) TC with a broad FWHM of 132.4 nm and a high CRI value of 80.7 was fabricated through the vacuum sintering technique for the first time. The optimized in-line transmittance of TCs was 58.4% @ 800 nm. Notably, the GSAG:Ce TCs exhibited a remarkable red shift from 546 nm to 582 nm, with a high internal quantum efficiency (IQE) of 46.91%. The degraded thermal stability in Ce:GSAG TCs was observed compared with that of Ce:YAG TC, owing to the narrowed band gap of GSAG. Additionally, remote excitation white LEDs/LDs were constructed by combining GSAG:Ce TCs with blue LED chips or laser sources. A tunable color hue from yellow to shinning white was achieved in white LEDs, whereas the acquired CRI and CCT of the white LDs were 69.5 and 7766 K, respectively. This work provides a new perspective to develop TCs with high CRI for their real applications in high-power white LEDs/LDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.