Stat3 is a member of the signal transducer and activator of transcription family, which is important in cytokine signaling. Gene ablation studies have revealed a requirement for Stat3 in diverse biological processes (Akira, S. 2000. Oncogene. 19: 2607–2611; Levy, D.E., and C.K. Lee. 2002. J. Clin. Invest. 109:1143–1148). Previously, the function of Stat3 had been attributed exclusively to its transcriptional activity in the nucleus. In this study, we reveal an interaction between Stat3 and the microtubule (MT)-destabilizing protein stathmin. Stathmin did not overtly affect ligand-stimulated Stat3 activation. In contrast, the expression of Stat3 is required for the stabilization of MTs and cell migration. We further demonstrate that Stat3-containing cells are resistant to the MT-destabilizing effect of stathmin overexpression. In addition, down-regulation of stathmin protein levels in Stat3-deficient cells partially reversed the MT and migration deficiencies. Recombinant Stat3 was also capable of reversing stathmin inhibition of tubulin polymerization in vitro. Our results indicate that Stat3 modulates the MT network by binding to the COOH-terminal tubulin-interacting domain of stathmin and antagonizing its MT destabilization activity.
Signal transducer and activator of transcription 3 (Stat3) is a latent cytoplasmic transcription factor that can be activated by cytokines and growth factors. Stat3 plays important roles in cell growth, anti-apoptosis and cell transformation, and is constitutively active in various cancers. We examined its potential regulators by yeast two-hybrid screening. GRIM-19, a gene product related to interferon-beta- and retinoic acid-induced cancer cell death, was identified and demonstrated to interact with Stat3 in various cell types. The interaction is specific for Stat3, but not for Stat1 and Stat5a. The interaction regions in both proteins were mapped, and the cellular localization of the interaction was examined. GRIM-19 itself co-localizes with mitochondrial markers, and forms aggregates at the perinulear region with co-expressed Stat3, which inhibits Stat3 nuclear translocation stimulated by epidermal growth factor (EGF). GRIM-19 represses Stat3 transcriptional activity and its target gene expression, and also suppresses cell growth in Src-transformed cells and a Stat3-expressing cell line. Our data suggest that GRIM-19 is a novel negative regulator of Stat3.
Mitochondria play essential roles in cellular energy production via the oxidative phosphorylation system (OXPHOS) consisting of five multiprotein complexes and also in the initiation of apoptosis. NADH:ubiquinone oxidoreductase (complex I) is the largest complex that catalyzes the first step of electron transfer in the OXPHOS system. GRIM-19 was originally identified as a nuclear protein with apoptotic nature in interferon (IFN)-and all-trans-retinoic acid (RA)-induced tumor cells. To reveal its biological role, we generated mice deficient in GRIM-19 by gene targeting. Homologous deletion of GRIM-19 causes embryonic lethality at embryonic day 9.5. GRIM-19؊/؊ blastocysts show retarded growth in vitro and, strikingly, display abnormal mitochondrial structure, morphology, and cellular distribution. We reexamined the cellular localization of GRIM-19 in various cell types and found its primary localization in the mitochondria. Furthermore, GRIM-19 is detected in the native form of mitochondrial complex I. Finally, we show that elimination of GRIM-19 destroys the assembly and electron transfer activity of complex I and also influences the other complexes in the mitochondrial respiratory chain. Our result demonstrates that GRIM-19, a gene product with a specific role in IFN-RA-induced cell death, is a functional component of mitochondrial complex I and is essential for early embryonic development.
N-terminal acetylation is an abundant modification influencing protein functions. Since ≈80% of mammalian cytosolic proteins are N-terminally acetylated, this potentially represents an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions, suggesting it may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation-dependent interaction between an E2 conjugating enzyme (UBE2M, aka UBC12) and DCN1 (aka DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl amide binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress the anchorage-independent growth of a cell line harboring DCN1 amplification. Overall, the data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets, and provide insights into targeting multiprotein E2–E3 ligases.
Covalent modification of cullins by the ubiquitin-like protein NEDD8 (neddylation) regulates protein ubiquitination by promoting the assembly of cullin-RING ligase E3 complexes. Like ubiquitination, neddylation results from an enzymatic cascade involving the sequential activity of a dedicated E1 (APPBP1/ Uba3), E2 (Ubc12), and an ill-defined E3. We show that SCCRO (also known as DCUN1D1) binds to the components of the neddylation pathway (Cullin-ROC1, Ubc12, and CAND1) and augments but is not required for cullin neddylation in reactions using purified recombinant proteins. We also show that SCCRO recruits Ubc12ϳNEDD8 to the CAND1-Cul1-ROC1 complex but that this is not sufficient to dissociate or overcome the inhibitory effects of CAND1 on cullin neddylation in purified protein assays. In contrast to findings in cellular systems where no binding is seen, we show that SCCRO and CAND1 can bind to the neddylated Cul1-ROC1 complex in assays using purified recombinant proteins. Although neddylated (not unneddylated) Cul1-ROC1 is released from CAND1 upon incubation with testis lysate from SCCRO ؉/؉ mice, the addition of recombinant SCCRO is required to achieve the same results in lysate from SCCRO ؊/؊ mice. Combined, these results suggest that SCCRO is an important component of the neddylation E3 complex that functions to recruit charged E2 and is involved in the release of inhibitory effects of CAND1 on cullin-RING ligase E3 complex assembly and activity.Post-translational modification of proteins by ubiquitin (Ub) 4 regulates diverse cellular functions including protein turnover, differentiation, apoptosis, cell cycle, and transcription (1-5). Given its essential role, ubiquitination is a highly regulated process that involves the sequential action of three enzymes termed as E1, E2, and E3. In this enzymatic cascade, E1 initiates the process by forming a high energy thioester bond with Ub in an ATP-coupled reaction. The Ub is then transferred to E2 as a thioester intermediate. Finally, E3s serve as the targeting arm in the ubiquitination process, mediating the transfer of Ub from E2 to the target protein to create an isopeptide bond between the C-terminal glycine in Ub and a lysine residue on the substrate protein. Once attached, the Ub itself can be modified to generate polyubiquitin chains on the target protein (6). The functional effects of ubiquitination are influenced by the chain length and the residue on the Ub to which the chain is attached. Polyubiquitination promotes translocation to the 26 S proteasome for degradation. Other functional effects of mono-and polyubiquitination include protein translocation, interaction, and activation.Although there is only one known E1 (except in plants) and relatively few E2s, E3s exist in multiple forms to allow for specific protein targeting (6). In general, E3s are modular multiprotein complexes that can be divided into two broad categories based on the presence of either a HECT (homologous to E6-AP C terminus) or RING (Really Interesting New Gene)-finger domain-containi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.