Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g−1 at 1.25 A g−1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h−1.
Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.
A multifunctional metal-organic framework, NBU-3, has been explored as a 2D three-connected network based on a naphthalenediimide-based ligand. The NBU-3 crystals display photochromic properties, and NBU-3 thin films on FTO substrates exhibit electrochromic properties. NBU-3 is the first example of MOF materials containing both photochromic and electrochromic properties, which can be desirable for thin film devices.
Porous ZnO-NiO composite micropolyhedrons have been successfully synthesized by calcination of mixed oxalate (Zn(0.9)Ni(0.1)(C(2)O(4))(2)·nH(2)O) precursors in air. The oxalate precursor micropolyhedrons were synthesized by a mild chemical precipitation method without any template or surfactant, and found to have a relatively low decomposition temperature. We have successfully explored the application of the resulting porous ZnO-NiO composite micropolyhedrons as electrochemical capacitors. Electrochemical study shows that the obtained ZnO-NiO composites under different conditions have different electrochemical supercapacitor properties in 3.0 or 1.0 M KOH solutions. The porous ZnO-NiO micropolyhedron material (P1) obtained by calcination of the oxalate precursor at 400 °C has a large specific capacitance 649.0 F g(-1) in 3.0 M KOH solution and could maintain 99.1% of this value after 400 cycles at 5.8 A g(-1). Even at a high current density of 58.0 A g(-1), the specific capacitance of P1 is 395.2 F g(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.