For phosphor-converted white LEDs based on UV chips, it is essential to search high efficient phosphors that better feature with broadly tunable emission and particularly have no or less excitation in visible ranges.
Delineation of tumor margins is a critical and challenging objective during brain cancer surgery. A tumor-targeting deep-blue nanoparticle-based visible contrast agent is described, which, for the first time, offers in vivo tumor-specific visible color staining. This technology thus enables color-guided tumor resection in real time, with no need for extra equipment or special lighting conditions. The visual contrast agent consists of polyacrylamide nanoparticles covalently linked to Coomassie Blue molecules (for nonleachable blue color contrast), which are surface-conjugated with polyethylene glycol and F3 peptides for efficient in vivo circulation and tumor targeting, respectively.
The use of targeted nanoparticles (NPs) as a platform for loading photosensitizers enables selective accumulation of the photosensitizers in the tumor area, while maintaining their photodynamic therapy (PDT) effectiveness. Here two novel kinds of methylene blue (MB)-conjugated polyacrylamide (PAA) nanoparticles, MBI-PAA NPs and MBII-PAA NPs, based on two separate MB derivatives, are developed for PDT. This covalent conjugation with the NPs (i) improves the loading of MB, (ii) prevents any leaching of MB from the NPs and (iii) protects the MB from the effects of enzymes in the biological environment. The loading of MB into these two kinds of NPs was controlled by the input amount, resulting in concentrations with optimal singlet oxygen production. For each of the MB-NPs, the highest singlet oxygen production was found for an MB loading of around 11 nmol mg−1. After attachment of F3 peptide groups, for targeting, each of these NPs was taken up, selectively, by MDA-MB-435 tumor cells, in vitro. PDT tests demonstrated that both kinds of targeted NPs resulted in effective tumor cell kill, following illumination, while not causing dark toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.