AimTo report the results of a series of patients undergoing pure endoscopic endonasal pituitary surgery and to evaluate the efficacy and safety of this procedure.Materials and methodsThe data of 1,166 patients that underwent endoscopic endonasal transsphenoidal adenoma removal between December 2006 and June 2013 were retrospectively reviewed. Pre- and postoperative hormonal status (3 months after surgery) were analyzed and compared with the clinical parameters originally presented by the patients. The incidences of tumor removal, hormonal control, and tumor removal complications were retrospectively analyzed.ResultOut of 577 nonfunctioning adenomas, 180 were growth hormone (GH) secreting, 308 prolactin (PRL) secreting, 26 mixed GH/PRL adenomas, 68 adrenocorticotropin secreting, and 7 thyroid-stimulating hormone-secreting adenomas. The gross total removal of pituitary adenomas was achieved in 98 % of microadenomas, 92 % of macroadenomas, and 76 % of giant adenomas. Hormonal control was achieved in 47 (69 %) cases of ACTH adenomas, 119 (66 %) GH adenomas, 262 (85 %) PRL adenomas, and 6 (86 %) TSH adenomas. Postoperative complications were observed in 168 (14.4 %) patients. The most frequent complications were diabetes insipidus (7 %), epistaxis (1.7 %), hyposmia (1.5 %), anterior lobe insufficiency (1.3 %) ,and CSF leaks (0.6 %).ConclusionThe pure endoscopic approach is a safe, efficacious, and minimally invasive technique for the removal of pituitary adenomas. A higher gross total resection rate is vital for non-functional and functional adenomas. For patients with functional adenomas, while hormonal remission is unlikely to be achieved by surgery, the use of adjuvant therapy is advocated to obtain long-term hormonal control.
OBJECTIVE The goal of this study was to investigate the effectiveness and practicality of endoscopic surgery for treatment of supratentorial hypertensive intracerebral hemorrhage (HICH) compared with traditional craniotomy. METHODS The authors retrospectively analyzed 151 consecutive patients who were operated on for treatment of supratentorial HICH between January 2009 and June 2014 in the Department of Neurosurgery at Chinese PLA General Hospital. Patients were separated into an endoscopy group (82 cases) and a craniotomy group (69 cases), depending on the surgery they received. The hematoma evacuation rate was calculated using 3D Slicer software to measure the hematoma volume. Comparisons of operative time, intraoperative blood loss, Glasgow Coma Scale score 1 week after surgery, hospitalization time, and modified Rankin Scale score 6 months after surgery were also made between these groups. RESULTS There was no statistically significant difference in preoperative data between the endoscopy group and the craniotomy group (p > 0.05). The hematoma evacuation rate was 90.5% ± 6.5% in the endoscopy group and 82.3% ± 8.6% in the craniotomy group, which was statistically significant (p < 0.01). The operative time was 1.6 ± 0.7 hours in the endoscopy group and 5.2 ± 1.8 hours in the craniotomy group (p < 0.01). The intraoperative blood loss was 91.4 ± 93.1 ml in the endoscopy group and 605.6 ± 602.3 ml in the craniotomy group (p < 0.01). The 1-week postoperative Glasgow Coma Scale score was 11.5 ± 2.9 in the endoscopy group and 8.3 ± 3.8 in the craniotomy group (p < 0.01). The hospital stay was 11.6 ± 6.9 days in the endoscopy group and 13.2 ± 7.9 days in the craniotomy group (p < 0.05). The mean modified Rankin Scale score 6 months after surgery was 3.2 ± 1.5 in the endoscopy group and 4.1 ± 1.9 in the craniotomy group (p < 0.01). Patients had better recovery in the endoscopy group than in the craniotomy group. Data are expressed as the mean ± SD. CONCLUSIONS Compared with traditional craniotomy, endoscopic surgery was more effective, less invasive, and may have improved the prognoses of patients with supratentorial HICH. Endoscopic surgery is a promising method for treatment of supratentorial HICH. With the development of endoscope technology, endoscopic evacuation will become more widely used in the clinic. Prospective randomized controlled trials are needed.
AimsTumor electric fields therapy (TTFields) is emerging as a novel anti‐cancer physiotherapy. Despite recent breakthroughs of TTFields in glioma treatment, the average survival time for glioblastoma patients with TTFields is <2 years, even when used in conjugation with traditional anti‐cancer therapies. To optimize TTFields‐afforded efficacy against glioblastoma, we investigated the cancer cell‐killing effects of various TTFields paradigms using in vitro and in vivo models of glioblastoma.MethodsFor in vitro studies, the U251 glioma cell line or primary cell cultures prepared from 20 glioblastoma patients were treated with the tumor electric field treatment (TEFT) system. Cell number, volume, and proliferation were measured after TEFT at different frequencies (100, 150, 180, 200, or 220 kHz), durations (24, 48, or 72 h), field strengths (1.0, 1.5, or 2.2V/cm), and output modes (fixed or random sequence output). A transwell system was used to evaluate the influence of TEFT on the invasiveness of primary glioblastoma cells. For in vivo studies, the therapeutic effect and safety profiles of random sequence electric field therapy in glioblastoma‐transplanted rats were assessed by calculating tumor size and survival time and evaluating peripheral immunobiological and blood parameters, respectively.ResultsIn the in vitro settings, TEFT was robustly effective in suppressing cell proliferation of both the U251 glioma cell line and primary glioblastoma cell cultures. The anti‐proliferation effects of TEFT were frequency‐ and “dose” (field strength and duration)‐dependent, and contingent on the field sequence output mode, with the random sequence mode (TEFT‐R) being more effective than the fixed sequence mode (TEFT‐F). Genetic tests were performed in 11 of 20 primary glioblastoma cultures, and 6 different genetic traits were identified them. However, TEFT exhibited comparable anti‐proliferation effects in all primary cultures regardless of their genetic traits. TEFT also inhibited the invasiveness of primary glioblastoma cells in transwell experiments. In the in vivo rat model of glioblastoma brain transplantation, treatment with TEFT‐F or TEFT‐R at frequency of 200 kHz and field strength of 2.2V/cm for 14 days significantly reduced tumor volume by 42.63% (TEFT‐F vs. control, p = 0.0002) and 63.60% (TEFT‐R vs. control, p < 0.0001), and prolonged animal survival time by 30.15% (TEFT‐F vs. control, p = 0.0415) and 69.85% (TEFT‐R vs. control, p = 0.0064), respectively. The tumor‐bearing rats appeared to be well tolerable to TEFT therapies, showing only moderate increases in blood levels of creatine and red blood cells. Adverse skin reactions were common for TEFT‐treated rats; however, skin reactions were curable by local treatment.ConclusionTumor electric field treatment at optimal frequency, strength, and output mode markedly inhibits the cell viability, proliferation, and invasiveness of primary glioblastoma cells in vitro independent of different genetic traits of the cells. Moreover, a random sequence electric field output confers considerable anti‐cancer effects against glioblastoma in vivo. Thus, TTFields are a promising physiotherapy for glioblastoma and warrants further investigation.
BackgroundHypoxia-inducible factor-1 alpha (HIF-1α) is one of the key regulators of hypoxia/ischemia. MicroRNA-494 (miR-494) had cardioprotective effects against ischemia/reperfusion (I/R)-induced injury, but its functional relationship with HIF-1α was unknown. This study was undertaken to determine if miR-494 was involved in the induction of HIF-1α.ResultsQuantitative RT-PCR showed that miR-494 was up-regulated to peak after 4 hours of hypoxia in human liver cell line L02. To investigate the role of miR-494, cells were transfected with miR-494 mimic or miR-negative control, followed by incubation under normoxia or hypoxia. Our results indicated that overexpression of miR-494 significantly induced the expression of p-Akt, HIF-1α and HO-1 determined by qRT-PCR and western blot under normoxia and hypoxia, compared to negative control (p < 0.05). While LY294002 treatment markedly abolished miR-494-inducing Akt activation, HIF-1α and HO-1 increase under both normoxic and hypoxic conditions (p < 0.05). Moreover, apoptosis detection using Annexin V indicated that overexpression of miR-494 significantly decreased hypoxia-induced apoptosis in L02 cells, compared to control (p < 0.05). MiR-494 overexpression also decreased caspase-3/7 activity by 1.27-fold under hypoxia in L02 cells.ConclusionsOverexpression of miR-494 upregulated HIF-1α expression through activating PI3K/Akt pathway under both normoxia and hypoxia, and had protective effects against hypoxia-induced apoptosis in L02 cells. Thus, these findings suggested that miR-494 might be a target of therapy for hepatic hypoxia/ischemia injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.