Design and preparation of efficient and economical catalysts for direct hydroxylation of benzene to phenol is an important topic. In this work, a series of metal‐doped graphitic carbon nitride catalyst (Cu‐, Fe‐, V‐, Co‐, and Ni‐g‐C3N4) were successfully synthesized by using urea as the precursor through a facile and efficient method. The catalysts were characterized systematically using N2 adsorption–desorption, FTIR, thermogravimetric analysis, powder X‐ray diffraction, and X‐ray photoelectron spectroscopy techniques. It was found that the vanadium‐doped graphitic carbon nitride catalyst V‐g‐C3N4 was the most efficient catalyst for the direct synthesis of phenol from benzene with hydrogen peroxide as the oxidant and it could be recycled at least 4 times. The influence of reaction conditions such as the solvent, reaction temperature, reaction time, and the amounts of catalyst and hydrogen peroxide were investigated. Under optimized conditions, 18.2 % yield of phenol was obtained with the selectivity to phenol as high as 100 %.
V x O y @C catalysts were prepared from sucrose and NH 4 VO 3 by a one-pot hydrothermal method. They showed satisfactory catalytic performance for the hydroxylation of benzene to phenol in acetonitrile using oxygen as the oxidant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.