For the large pores and cracks of reservoirs with low temperatures, high salinity, and low permeability, a new type of high strength gel ABP system is developed in this paper. The defects of conventional gels such as weak gel strength, no gelling, and easy dehydration are overcome under the conditions of low temperature and high salinity. The temperature and salt resistance, plugging characteristics, and EOR of the gel system are studied. Under the condition of 32°C and 29500 mg/L salinity, the ABP system formulation is for 0.3% crosslinking agent A + 0.09% coagulant B + 3500 mg/L polymer solution P. The results show that when the temperature was increased, the delayed crosslinking time of the system was shortened and the gel strength was increased. The good plugging characteristics of the ABP system were reached, and the plugging rate was greater than 99% in cores with different permeability. A good profile control performance was achieved, and the recovery rate was improved by 19.27% on the basis of water flooding. In the practical application of the gel system, the salinity of formation water and the permeability of fractures are necessary to determine the appropriate formulation.
Aiming at the sticking phenomenon between the valve core and the valve sleeve when the valve core moves, and to solve the problem that the torque required to drive the valve core to rotate is large, the fluid–solid coupling simulation analysis of the valve core is carried out in this study, and then the valve core structure of the valve core is improved and its parameters are optimized based on the bird colony algorithm. The combination structure of the valve sleeve and valve core is studied, and the fluid–solid coupling model is established by Ansys WorkBench, and the static structure simulation analysis of valve sleeve and valve core before and after structural improvement and parameter optimization is performed. The mathematical models of triangular buffer tank, U-shaped buffer tank and combined buffer tank are established, and the structural parameters of the combined buffer tank are optimized by bird swarm optimization. The results demonstrate the triangular buffer tank has good depressurization effect but great impact, the pressure of the U-shaped buffer tank is stable and gentle but the depressurization effect is not ideal, while the combined buffer tank has obvious depressurization effect and good stability. At the same time, the optimal structural parameters of the combined buffer tank are cut-in angle of 72, plane angle of 60 and depth of 1.65 mm. The excellent structure and parameters of the combined buffer groove are obtained, so that the pressure buffer of the regulating valve at the key position of the valve port achieves the best effect, and an effective solution is provided for solving the sticking problem of the valve core of the regulating valve when working.
Abstract:Enhanced foam flooding is a chemical flooding technology, which is applied to improve the recovery efficiency of oil and gas. The oil displacement agent of enhanced foam flooding is a foam that the polymer and surfactant solution as liquid. In this paper, three-dimensional mathematical model of unsteady flow is established about enhanced foam system in the porous media, and the numerical calculation method is given to study the enhanced foam flooding. The results show that: the unsteady flow of enhanced foam system in porous media exists flow front, the flow foam average density of flow front reach the peak; enhanced foam flooding can form the oil bank in the displacement front and the oil saturation of the oil bank reaches about 0.55, the oil bank can produce effective drive to remain oil and then improve oil recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.