Control melt flow in tundish is very important for clean steel production. To explore the fluid flow mechanism, the RTD curves and its data, velocity vector fields and streamlines of the molten steel, and the relationship between the RTD curves and flow pattern in a single-strand slab caster tundish with a capacity of 30 tons have been investigated by both hydrodynamic and mathematical simulations. The RTD data and flow field of the original tundish have been studied in a 1:3 reduced scale hydrodynamic model. Meanwhile, the streamlines, velocity vector fields and the RTD data of the ratio of width to length (W/L) in tundish are mathematically simulated. In order to descript the flow pattern better, a new method is proposed to calculate the data of RTD curves with double peaks. The results showed that the RTD curves changed from double peaks to single peak with the increasing of the W/L in tundish. Both hydrodynamic and mathematical simulations results suggest that the W/L in tundish is the most important factor to change the flow pattern actually, that is, the short-circuiting flow disappeared with the increase of the W/H in tundish gradually. Furthermore, we have elaborated the mechanism the RTD curves change from double peaks to single peak. With increasing W/L, the wide-side walls play an important role to retard the short-circuiting flow on the inlet-outlet plane straight towards the outlet. Meanwhile, the dead region and its volume fraction are also the objects of our attention and exploration.KEY WORDS: tundish; a single-strand slab caster; flow mechanism; RTD curve; single peak; double peaks.
The structural features of biomass present in the hybrid MBBR (Moving Bed Biofilm Reactor) aeration tank were studied in two subsequent periods, which differed in hydraulic and substrate loads. The physical characteristics of attached-growth biomass, such as, biofilm thickness, density, porosity, inner and surface fractal dimensions, and those of suspended-growth biomass, such as, floc size distribution, density, porosity, inner and surface fractal dimensions, were investigated in each study period and then compared. The results indicated that biofilm always had a higher density, geometric porosity, and a larger boundary fractal dimension than flocs. Both types of biomass were found to exhibit at least two distinct Sierpinski fractal dimensions, indicating two major different pore space populations. With the increasing wastewater flow, both types of biomass were found to shift their structural properties to larger values, except porosity and surface roughness, which decreased. Floc density and biomass Sierpinski fractals were not affected much by the system loadings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.