The Tol–Pal system of Gram-negative bacteria is necessary for maintaining outer membrane integrity. It is a multiprotein complex of five envelope proteins, TolQ, TolR, TolA, TolB, and Pal. These proteins were first investigated in E. coli, and subsequently been identified in many other bacterial genera. However, the function of the Tol–Pal system in Salmonella Choleraesuis pathogenesis is still unclear. Here, we reported the role of three of these proteins in the phenotype and biology of S. Choleraesuis. We found that mutations in tolA, tolB, and tolR caused severe damage to the cell wall, which was supported by observing the microstructure of spherical forms, long chains, flagella defects, and membrane blebbing. We confirmed that all the mutants significantly decreased S. Choleraesuis survival when exposed to sodium deoxycholate and exhibited a high sensitivity to vancomycin, which may be explained by the disruption of envelope integrity. In addition, tolA, tolB, and tolR mutants displayed attenuated virulence in a mouse infection model. This could be interpreted as a series of defective phenotypes in the mutants, such as severe defects in envelope integrity, growth, and motility. Further investigation showed that all the genes participate in outer membrane vesicles (OMVs) biogenesis. Interestingly, immunization with OMVs from ΔtolB efficiently enhanced murine viability in contrast to OMVs from the wild-type S. Choleraesuis, suggesting its potential use in vaccination strategies. Collectively, this study provides an insight into the biological role of the S. Choleraesuis Tol–Pal system.
Mhp is the main pathogen of porcine enzootic pneumonia, a highly infectious and economically significant respiratory disease that affects pigs of all ages. As the target tissue of Mhp infections are the mucosal sites of the respiratory tract, the induction of protective immunity at the mucosal tissues is the most efficient strategy by which to block disease transmission.
Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.
Bacterial outer membrane vesicles (OMVs) have become a promising vaccine platform due to their excellent built-in adjuvanticity properties. However, the location and amount of the expression of the heterologous antigen in the OMVs delivered by the genetic engineering strategies should be optimized.
The Tol-Pal system of Gram-negative bacteria is necessary for maintaining outer membrane integrity. It is a multiprotein complex of five envelope proteins, TolQ, TolR, TolA, TolB, and Pal. These proteins were first investigated in E. coli, and subsequently been identified in many other bacterial genera. However, the function of the Tol-Pal system in Salmonella Choleraesuis pathogenesis is still unclear. Here, we reported the role of three of these proteins in the phenotype and biology of S. Choleraesuis. We found that mutations in tolA, tolB, and tolR caused severe damage to the cell wall, which was supported by observing the microstructure of spherical forms, long chains, flagella defects, and membrane blebbing. We confirmed that all the mutants significantly decreased S. Choleraesuis survival when exposed to sodium deoxycholate and exhibited a high sensitivity to vancomycin, which may be explained by the disruption of envelope integrity. In addition, tolA, tolB, and tolR mutants displayed attenuated virulence in a mouse infection model. This could be interpreted as a series of defective phenotypes in the mutants, such as severe defects in envelope integrity, growth, and motility. Further investigation showed that all the genes participate in outer membrane vesicles (OMVs) biogenesis. Interestingly, immunization with OMVs from ΔtolB efficiently enhanced murine viability in contrast to OMVs from the wild-type S. Choleraesuis, suggesting its potential use in vaccination strategies. Collectively, this study provides an insight into the biological role of the S. Choleraesuis Tol-Pal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.