Structural-color nanoprinting, which can generate vivid colors with spatial resolution at subwavelength level, possesses potential market in optical anticounterfeiting and information encryption. Herein, we propose an ultracompact metasurface with a single-cell design strategy to establish three independent information channels for simultaneous watermarked structural-color nanoprinting and holographic imaging. Dual-channel spectrum manipulation and single-channel phase manipulation are combined together by elaborately introducing the orientation degeneracy into the design of variable dielectric nanobricks. Hence, a structural-color nanoprinting image covered with polarization-dependent watermarks and a holographic image can be respectively generated under different decoded environments. The proposed metasurface shows a flexible method for tri-channel image display with high information capacity, and exhibits dual-mode anticounterfeiting with double safeguards, i.e., polarization-controlled watermarks and a far-field holographic image. This study provides a feasible route to develop multifunctional metasurfaces for applications including optical anticounterfeiting, information encryption and security, information multiplexing, etc.
Metasurface-based structural-colors are usually implemented by changing the dimensions of nanostructures to produce different spectral responses. Therefore, a single-size nanostructured metasurface usually cannot display structural-colors since it has only one design degree of freedom (DOF), i.e., the orientation angles of nanostructures. Here, we show structural-color nanoprinting images can be generated with a single-size nanostructured metasurface, enabled by designing the anisotropic nanostructure with different spectral responses along its long- and short-axis directions, respectively. More interestingly, the concept of orientation degeneracy of nanostructures can be applied in the metasurface design, which shows two spectral modulations can be implemented under different polarization directions of output light, thus extending the color-nanoprinting from single-channel to dual-channel. The proposed dual-channel metasurface used for anticounterfeiting color-nanoprinting has presented the advantages of ultra-compactness, high information capacity, and vivid colors, which can develop broad applications in fields such as high-end anticounterfeiting, high-density information storage, optical encryption, etc.
Featuring with ultracompactness and subwavelength resolution, metasurface-assisted nanoprinting has been widely researched as an optical device for image display. It also provides a platform for information multiplexing, and a series of multiplexed works based on incident polarizations, operating wavelengths and observation angles have emerged. However, the angular-multiplexing nanoprinting is realized at the cost of image resolution reduction or the increase of fabrication difficulty, hindering its practical applications. Here, inspired by the Jacobi-Anger expansion, a phase-assisted design paradigm, called Bessel metasurface, was proposed for angular multiplexing nanoprinting. By elaborately designing the phase distribution of the Bessel metasurface, the target images can be encoded into the desired observation angles, reaching angular multiplexing. With the merits of ultracompactness and easy fabrication, we believe that our design strategy would be attractive in the real-world applications, including optical information storage, encryption/concealment, multifunctional switchable optical devices, and 3D stereoscopic displays, etc.
Optical tweezers are a crucial tool for manipulating nanoscale objects, and have a wide range of applications in various fields. Bowtie-nanohole tweezers, a type of near-field optical tweezers, are particularly intriguing due to their strong near-field enhancement and unique characteristics. In this paper we provide a detailed discussion of the properties of bowtie-nanohole tweezers on trapping and sorting nanoparticles through theoretical and numerical results. It is discovered that the tweezers behave differently when trapping particles with varying refractive indices, leading to a discussion of sorting chiral particles. Moreover, the relative refractive index between the particles and the background solution greatly influences the trapping and sorting abilities of the tweezers. Finally, we investigate the performance of the tweezers at different wavelengths of incident light to determine the optimal working wavelength for trapping or sorting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.