Threshold pressure gradient (TPG) is a key parameter determining the pore-scale fluid dynamics. In tight gas reservoirs, both gas and water exist in the porous rock, and the existing water can be divided into irreducible and movable water. However, how movable water saturation will influence TPG has not yet been investigated. Therefore herein, nuclear magnetic resonance (NMR) and high-pressure mercury intrusion (HPMI) experiments were performed to determine pore-scale water distribution, movable water saturation, and pore throat distribution in the core plugs. Subsequently, the air bubble method was used to measure TPG as a function of movable water saturation and permeability inside tight gas core plugs, finding that TPG increased from 0.01 MPa/m to 0.25 MPa/m with the movable saturation increased from 2% to 35%. Finally, a semi-empirical model was derived to describe the correlation between TPG, movable water saturation, and permeability, which performed better than previous models in the literature. These insights will advance the fundamental understanding of TPG in tight gas reservoirs and provide useful guidance on tight gas reservoirs development.
Fracturing fluids are widely applied in the hydraulic fracturing of shale gas reservoirs, but the fracturing fluid flowback efficiency is typically less than 50%, severely limiting the shale gas recovery. Additionally, the mechanism and main influencing factors of fracturing fluid flowback are unclear. In this study, microscopic experiments are conducted to simulate the fracturing fluid flowback progress in shale gas reservoirs. The mechanism and factors affecting fracturing fluid flowback/retention in the fracture zone were analyzed and clarified. Results show that the ultimate flowback efficiency of fracturing fluid is positively correlated with the fracturing fluid concentration and the gas driving pressure difference. There are four kinds of mechanisms responsible for fracturing fluid retention in the pore network: viscous resistance, the Jamin effect, the gas blockage effect and the dead end of the pore. Additionally, the ultimate flowback efficiency of the fracturing fluid increases linearly with increasing capillary number. These insights will advance the fundamental understanding of fracturing fluid flowback in shale gas reservoirs and provide useful guidance for shale gas reservoirs development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.