BackgroundSunitinib is a tyrosine kinase inhibitor with effective therapeutic outcomes in patients with renal-cell carcinoma. The study were to analyze the association of single-nucleotide polymorphisms present in cell-free DNA and pharmacokinetics with sunitinib treatment-emergent adverse events in Chinese patients with renal-cell carcinoma.Materials and MethodsWe genotyped 8 keys SNPs in 6 candidate genes. The plasma concentrations of sunitinib and N-desethyl sunitinib were measured using a high performance liquid chromatography-tandam mass spectrometry method. Correlations between the single-nucleotide polymorphisms and adverse events were investigated by univariate and multivariate logistic regression and we quantitatively evaluated the effect of single-nucleotide polymorphisms on the pharmacokinetics of sunitinib by using a population PK model.ResultsNecessary dose reductions of sunitinib were significantly correlated with SNP rs1933437 in FLT3. A higher severity of AEs were collected with SNP rs2032582 in ABCB1 and rs1800812 in PDGFRα. Thrombocytopenia was collected with rs1800812 in PDGFRα. Our study provides a population PK model of sunitinib with the ABCB1 genotype as a predictive covariate for apparent oral clearance.ConclusionsOur study preliminarily confirmed the hypothesis that the pharmacokinetics of sunitinib is affected by the SNPs of enzyme in Chinese renal-cell carcinoma patients, and this affects the different distribution and severity of adverse events of sunitinib.
To evaluate the biodistribution of hydroxychloroquine (HCQ) in cynomolgus macaques and receive dynamic quantitative relationship between plasma, blood, and lung tissue concentration using the population pharmacokinetic modeling method, seventeen cynomolgus macaques were divided into six groups according to different HCQ dosing regimens over 5 days. The monkeys were euthanized, and blood, plasma, urine, feces and ten tissues were collected. All the samples were prepared by protein precipitation and analyzed by HPLC-MS/MS detection. The population pharmacokinetics of HCQ in the plasma, red blood cells, and lung tissue was conducted and simulated via ADAPT program. Results demonstrated that the maximum concentration (Cmax) of HCQ was 292.33 ng/mL in blood and 36.90 ng/mL in plasma after single dose of 3 mg/kg. The value of area under curve (AUC0–∞) was determined as 5,978.94 and 363.31 h* ng/mL for the blood and plasma, respectively. The descending order of the tissue-to-plasma concentration ratio was liver > spleen > kidney > lung > heart > subcutaneous fat > brain. The tissue-to-plasma concentration ratio and the tissue-to-blood concentration ratio for lung were found to be time-dependent with 267.38 and 5.55 at 120 h postdose, respectively. A five-compartment model with first-order oral absorption and elimination best described the plasma, blood, and lung tissue pharmacokinetics. The estimated elimination rate constant (ke) for a typical monkey was 0.236 h−1. The volume of distribution in central (Vc/F) and other two peripheral compartments (Vb/F and Vl/F) were 114, 2.68, and 5.55 L, respectively. Model-based simulation with PK parameters from cynomolgus macaques showed that the ratio of the blood or plasma to lung tissue was a dynamic change course, which suggested that the rate of HCQ concentration decrease in the blood or plasma was faster than that in the lung tissue. HCQ was found to be accumulated in tissues, especially in the liver, kidney, lung, and spleen. Also, the tissue-to-plasma concentration ratio increased over time. The population pharmacokinetic model developed could allow for the assessment of pharmacokinetics–pharmacodynamics relationships, especially relevant tissue concentration-response for HCQ. Determining appropriate treatment regimens in animals allows translation of these to clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.