Displayed ultrasound (US) B-mode images often exhibit tissue intensity inhomogeneities dominated by nonuniform beam attenuation within the body. This is a major problem for intensity-based, automatic segmentation of video-intensity images because conventional threshold-based or intensity-statistic-based approaches do not work well in the presence of such image distortions. Time gain compensation (TGC) is typically used in standard US machines in an attempt to overcome this. However this compensation method is position-dependent which means that different tissues in the same TGC time-range (or corresponding depth range) will be, incorrectly, compensated by the same amount. Compensation should really be tissue-type dependent but automating this step is difficult. The main contribution of this paper is to develop a method for simultaneous estimation of video-intensity inhomogeities and segmentation of US image tissue regions. The method uses a combination of the maximum a posteriori (MAP) and Markov random field (MRF) methods to estimate the US image distortion field assuming it follows a multiplicative model while at the same time labeling image regions based on the corrected intensity statistics. The MAP step is used to estimate the intensity model parameters while the MRF step provides a novel way of incorporating the distributions of image tissue classes as a spatial smoothness constraint. We explain how this multiplicative model can be related to the ultrasonic physics of image formation to justify our approach. Experiments are presented on synthetic images and a gelatin phantom to evaluate quantitatively the accuracy of the method. We also discuss qualitatively the application of the method to clinical breast and cardiac US images. Limitations of the method and potential clinical applications are outlined in the conclusion.
Three-dimensional (3-D) ultrasound imaging of the breast enables better assessment of diseases than conventional two-dimensional (2-D) imaging. Free-hand techniques are often used for generating 3-D data from a sequence of 2-D slice images. However, the breast deforms substantially during scanning because it is composed primarily of soft tissue. This often causes tissue mis-registration in spatial compounding of multiple scan sweeps. To overcome this problem, in this paper, instead of introducing additional constraints on scanning conditions, we use image processing techniques. We present a fully automatic algorithm for 3-D nonlinear registration of free-hand ultrasound data. It uses a block matching scheme and local statistics to estimate local tissue deformation. A Bayesian regularization method is applied to the sample displacement field. The final deformation field is obtained by fitting a B-spline approximating mesh to the sample displacement field. Registration accuracy is evaluated using phantom data and similar registration errors are achieved with (0.19 mm) and without (0.16 mm) gaps in the data. Experimental results show that registration is crucial in spatial compounding of different sweeps. The execution time of the method on moderate hardware is sufficiently fast for fairly large research studies.
Ultrasound B-scan images often exhibit intensity inhomogeneities caused by non-uniform beam attenuation within the body. These cause major problems for image analysis, both by manual and computer-aided techniques, particularly the computation of quantitative measurements. We present a statistical model that exploits knowledge of tissue properties and intensity inhomogeneities in ultrasound for simultaneous contrast enhancement and image segmentation. The underlying model was originally proposed for correction of the B1 bias field distortion and segmentation of magnetic resonance (MR) images.' A physics-based model of intensity inhomogeneities in ultrasound images shows that the bias field correction method is well suited to ultrasound B-scan images. The tissue class labelling and the intensity correction field are estimated using the maximum a posteriori (MAP) principle, in an iterative, multi-resolution manner. The algorithm has been applied to breast and cardiac ultrasound images. The results demonstrate that it can successfully remove intensity inhomogeneities caused by varying attenuation as well as uninteresting intensity changes of background tissues. With the removal of intensity inhomogeneities, significant improvement is achieved in tissue contrast and segmentation result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.