Software-defined networks facilitate rapid and open innovation at the network control layer by providing a programmable network infrastructure for computing flow policies on demand. However, the dynamism of programmable networks also introduces new security challenges that demand innovative solutions. A critical challenge is efficient detection and reconciliation of potentially conflicting flow rules imposed by dynamic OpenFlow (OF) applications. To that end, we introduce FortNOX, a software extension that provides role-based authorization and security constraint enforcement for the NOX OpenFlow controller. FortNOX enables NOX to check flow rule contradictions in real time, and implements a novel analysis algorithm that is robust even in cases where an adversarial OF application attempts to strategically insert flow rules that would otherwise circumvent flow rules imposed by OF security applications. We demonstrate the utility of FortNOX through a prototype implementation and use it to examine performance and efficiency aspects of the proposed framework.
Abstract-Software-Defined Networking (SDN) is a new networking paradigm that grants a controller and its applications an omnipotent power to have holistic network visibility and flexible network programmability, thus enabling new innovations in network protocols and applications. One of the core advantages of SDN is its logically centralized control plane to provide the entire network visibility, on which many SDN applications rely. For the first time in the literature, we propose new attack vectors unique to SDN that seriously challenge this foundation. Our new attacks are somewhat similar in spirit to spoofing attacks in legacy networks (e.g., ARP poisoning attack), however with significant differences in exploiting unique vulnerabilities how current S-DN operates differently from legacy networks. The successful attacks can effectively poison the network topology information, a fundamental building block for core SDN components and topology-aware SDN applications. With the poisoned network visibility, the upper-layer OpenFlow controller services/apps may be totally misled, leading to serious hijacking, denial of service or man-in-the-middle attacks. According to our study, all current major SDN controllers we find in the market (e.g., Floodlight, OpenDaylight, Beacon, and POX) are affected, i.e., they are subject to the Network Topology Poisoning Attacks. We then investigate the mitigation methods against the Network Topology Poisoning Attacks and present TopoGuard, a new security extension to SDN controllers, which provides automatic and real-time detection of Network Topology Poisoning Attacks. Our evaluation on a prototype implementation of TopoGuard in the Floodlight controller shows that the defense solution can effectively secure network topology while introducing only a minor impact on normal operations of OpenFlow controllers.
Abstract-Fuzz testing has proven successful in finding security vulnerabilities in large programs. However, traditional fuzz testing tools have a well-known common drawback: they are ineffective if most generated malformed inputs are rejected in the early stage of program running, especially when target programs employ checksum mechanisms to verify the integrity of inputs. In this paper, we present TaintScope, an automatic fuzzing system using dynamic taint analysis and symbolic execution techniques, to tackle the above problem. TaintScope has several novel contributions: 1) TaintScope is the first checksum-aware fuzzing tool to the best of our knowledge. It can identify checksum fields in input instances, accurately locate checksum-based integrity checks by using branch profiling techniques, and bypass such checks via control flow alteration. 2) TaintScope is a directed fuzzing tool working at X86 binary level (on both Linux and Window). Based on fine-grained dynamic taint tracing, TaintScope identifies which bytes in a well-formed input are used in security-sensitive operations (e.g., invoking system/library calls) and then focuses on modifying such bytes. Thus, generated inputs are more likely to trigger potential vulnerabilities. 3) TaintScope is fully automatic, from detecting checksum, directed fuzzing, to repairing crashed samples. It can fix checksum values in generated inputs using combined concrete and symbolic execution techniques.We evaluate TaintScope on a number of large real-world applications. Experimental results show that TaintScope can accurately locate the checksum checks in programs and dramatically improve the effectiveness of fuzz testing. TaintScope has already found 27 previously unknown vulnerabilities in several widely used applications, including Adobe Acrobat, Google Picasa, Microsoft Paint, and ImageMagick. Most of these severe vulnerabilities have been confirmed by Secunia and oCERT, and assigned CVE identifiers (such as CVE-2009-1882, CVE-2009-2688. Corresponding patches from vendors are released or in progress based on our reports.
This paper addresses one serious SDN-specific attack, i.e., data-to-control plane saturation attack, which overloads the infrastructure of SDN networks. In this attack, an attacker can produce a large amount of table-miss packet_in messages to consume resources in both control plane and data plane. To mitigate this security threat, we introduce an efficient, lightweight and protocol-independent defense framework for SDN networks. Our solution, called FLOODGUARD, contains two new techniques/modules: proactive flow rule analyzer and packet migration. To preserve network policy enforcement, proactive flow rule analyzer dynamically derives proactive flow rules by reasoning the runtime logic of the SDN/OpenFlow controller and its applications. To protect the controller from being overloaded, packet migration temporarily caches the flooding packets and submits them to the OpenFlow controller using rate limit and round-robin scheduling. We evaluate FLOODGUARD through a prototype implementation tested in both software and hardware environments. The results show that FLOODGUARD is effective with adding only minor overhead into the entire SDN/OpenFlow infrastructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.