Mechanical properties and geometries of printed products have been extensively studied in metal 3D printing. However, chemical properties and catalytic functions, introduced by metal 3D printing itself, are rarely mentioned. Here we show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts (denoted as selfcatalytic reactor or SCR) for direct conversion of C1 molecules (including CO, CO 2 and CH 4) into high value-added chemicals. The Fe-SCR and Co-SCR successfully catalyze synthesis of liquid fuel from Fischer-Tropsch synthesis and CO 2 hydrogenation; the Ni-SCR efficiently produces syngas (CO/H 2) by CO 2 reforming of CH 4. Further, the Co-SCR geometrical studies indicate that metal 3D printing itself can establish multiple control functions to tune the catalytic product distribution. The present work provides a simple and low-cost manufacturing method to realize functional integration of catalyst and reactor, and will facilitate the developments of chemical synthesis and 3D printing technology.
Ce promoted Cu/SiO2 catalysts prepared by a urea-assisted gelation approach exhibited excellent catalytic activity and stability for DMO hydrogenation to ethanol.
High quality Al2O3 film grown by atomic layer deposition (ALD), with ozone (O3) as oxygen source, is demonstrated for fabrication of normally-off AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs). Significant suppression of Al–O–H and Al–Al bonds in ALD-Al2O3 has been realized by substituting conventional H2O source with O3. A high dielectric breakdown E-field of 8.5 MV/cm and good TDDB behavior are achieved in a gate dielectric stack consisting of 13-nm O3-Al2O3 and 2-nm H2O-Al2O3 interfacial layer on recessed GaN. By using this 15-nm gate dielectric and a high-temperature gate-recess technique, the density of positive bulk/interface charges in normally-off AlGaN/GaN MIS-HEMTs is remarkably suppressed to as low as 0.9 × 1012 cm−2, contributing to the realization of normally-off operation with a high threshold voltage of +1.6 V and a low specific ON-resistance RON,sp of 0.49 mΩ cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.