Flexible pressure sensors have been widely used in health detection, robot sensing, and shape recognition. The micro-engineered design of the intermediate dielectric layer (IDL) has proven to be an effective way to optimize the performance of flexible pressure sensors. Nevertheless, the performance development of flexible pressure sensors is limited due to cost and process difficulty, prepared by inverted mold lithography. In this work, microstructured arrays printed by aerosol printing act as the IDL of the sensor. It is a facile way to prepare flexible pressure sensors with high performance, simplified processes, and reduced cost. Simultaneously, the effects of microstructure size, PDMS/MWCNTs film, microstructure height, and distance between the microstructures on the sensitivity and response time of the sensor are studied. When the microstructure size, height, and distance are 250 µm, 50 µm, and 400 µm, respectively, the sensor shows a sensitivity of 0.172 kPa−1 with a response time of 98.2 ms and a relaxation time of 111.4 ms. Studies have proven that the microstructured dielectric layer printed by aerosol printing could replace the inverted mold technology. Additionally, applications of the designed sensor are tested, such as the finger pressing test, elbow bending test, and human squatting test, which show good performance.
Flexible pressure sensors have attracted much attention in academia owing to their wide-ranging applications in wearable electronics, medical electronics and digital health. However, practical engineering applications have been restricted because of limitations in efficiency, manufacturing costs and sensitivity. In this work, we propose an innovative method for high-efficiency printing of microstructures that replaces traditional inverted mold methods. We developed a high-sensitivity flexible piezoresistive pressure (FPP) sensor with a high manufacturing efficiency and low manufacturing cost. The sensor was encapsulated by connecting a polydimethylsiloxane (PDMS) film with microstructures prepared using the sandpaper-molding method (SMM), and then integrated with an interdigital electrode and spherical micro-structures fabricated via resonant printing. In this way, the manufacturing process was simplified by breaking it down into two steps. The performance of the sensor was assessed by conducting experiments under different pressure regimes. The results demonstrated ultra-high sensitivity (0.0058–0.024 kPa–1) and a wide pressure detection range (1–100 kPa), spanning the entire range of pressure monitoring typically observed for vital and health signals. The response time of the sensor was less than 72 ms. Furthermore, the performance of the fabricated sensor was highly stable after 1000 bending cycle. The potential applications of the FPP sensor are discussed in area such as the human body and mouse.
The humidity of breath can serve as an important health indicator, providing crucial clinical information about human physiology. Significant progress had been made in the development of flexible humidity sensors. However, improving its humidity sensing performance (sensitivity and durability) is still facing many challenges. In this work, near-field electrohydrodynamic direct writing (NFEDW) was proposed to fabricate humidity sensors with high sensitivity and durability for respiration monitoring. Due to the applied electric field, dense carbon nanotube/cellulose nanofiber (CNT/CNF) networks formed during the printing process that enhance the sensitivity of the sensor. The prepared sensor showed excellent humidity responses, with a maximum response value of 61.5% (ΔR/R 0 ) at 95% relative humidity (RH). Additionally, the sensitivity film prepared by the NFEDW method closely fits the poly(ethylene terephthalate) (PET) substrate, endowing the sensor with outstanding bending (with a maximum curvature of 4.7 cm −1 ) and folding durability (up to 50 times). The sensitivity of the prepared sensor under different simulated conditions, namely, nose breathing, mouth breathing, coughing, yawning, breath holding, and speaking, was excellent, demonstrating the potential of the sensor for the real-time monitoring of human breath humidity. Thus, the high-performance flexible humidity sensor is suitable for human respiration and health monitoring.
Three-dimensional microstructures play a key role in the fabrication of flexible electronic products. However, the development of flexible electronics is limited in further applications due to low positioning accuracy, the complex process, and low production efficiency. In this study, a novel method for fabricating three-dimensional circular truncated cone microstructures via low-frequency ultrasonic resonance printing is proposed. Simultaneously, to simplify the manufacturing process of flexible sensors, the microstructure and printed interdigital electrodes were fabricated into an integrated structure, and a flexible pressure sensor with microstructures was fabricated. Additionally, the effects of flexible pressure sensors with and without microstructures on performance were studied. The results show that the overall performance of the designed sensor with microstructures could be effectively improved by 69%. Moreover, the sensitivity of the flexible pressure sensor with microstructures was 0.042 kPa−1 in the working range of pressure from 2.5 to 10 kPa, and the sensitivity was as low as 0.013 kPa−1 within the pressure range of 10 to 30 kPa. Meanwhile, the sensor showed a fast response time, which was 112 ms. The stability remained good after the 100 cycles of testing. The performance was better than that of the flexible sensor fabricated by the traditional inverted mold method. This lays a foundation for the development of flexible electronic technology in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.