Most persons with confirmed H7N9 virus infection had severe lower respiratory tract illness, were epidemiologically unrelated, and had a history of recent exposure to poultry. However, limited, nonsustained human-to-human H7N9 virus transmission could not be ruled out in four families.
BACKGROUND:
Over the past decade, the safety of anesthetic agents in children has been questioned after the discovery that immature animals exposed to anesthesia display apoptotic neurodegeneration and long-term cognitive deficiencies. We examined the association between exposure to anesthesia in children under age 3 and outcomes in language, cognitive function, motor skills, and behavior at age 10.
METHODS:
We performed an analysis of the Western Australian Pregnancy Cohort (Raine) Study, which includes 2868 children born from 1989 to 1992. Of 2608 children assessed, 321 were exposed to anesthesia before age 3, and 2287 were unexposed.
RESULTS:
On average, exposed children had lower scores than their unexposed peers in receptive and expressive language (Clinical Evaluation of Language Fundamentals: Receptive [CELF-R] and Expressive [CELF-E]) and cognition (Colored Progressive Matrices [CPM]). After adjustment for demographic characteristics, exposure to anesthesia was associated with increased risk of disability in language (CELF-R: adjusted risk ratio [aRR], 1.87; 95% confidence interval [CI], 1.20–2.93, CELF-E: aRR, 1.72; 95% CI, 1.12–2.64), and cognition (CPM: aRR, 1.69; 95% CI, 1.13–2.53). An increased aRR for disability in language and cognition persisted even with a single exposure to anesthesia (CELF-R aRR, 2.41; 95% CI, 1.40–4.17, and CPM aRR, 1.73; 95% CI, 1.04–2.88).
CONCLUSIONS:
Our results indicate that the association between anesthesia and neuropsychological outcome may be confined to specific domains. Children in our cohort exposed to anesthesia before age 3 had a higher relative risk of language and abstract reasoning deficits at age 10 than unexposed children.
BackgroundPrecise genome editing via homology-directed repair (HDR) after double-stranded DNA (dsDNA) cleavage facilitates functional genomic research and holds promise for gene therapy. However, HDR efficiency remains low in some cell types, including some of great research and clinical interest, such as human induced pluripotent stem cells (iPSCs).ResultsHere, we show that a double cut HDR donor, which is flanked by single guide RNA (sgRNA)-PAM sequences and is released after CRISPR/Cas9 cleavage, increases HDR efficiency by twofold to fivefold relative to circular plasmid donors at one genomic locus in 293 T cells and two distinct genomic loci in iPSCs. We find that a 600 bp homology in both arms leads to high-level genome knockin, with 97–100% of the donor insertion events being mediated by HDR. The combined use of CCND1, a cyclin that functions in G1/S transition, and nocodazole, a G2/M phase synchronizer, doubles HDR efficiency to up to 30% in iPSCs.ConclusionsTaken together, these findings provide guidance for the design of HDR donor vectors and the selection of HDR-enhancing factors for applications in genome research and precision medicine.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-017-1164-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.