IntroductionStudies have demonstrated that mesenchymal stromal cells (MSCs) could reverse acute and chronic kidney injury by a paracrine or endocrine mechanism, and microvesicles (MVs) have been regarded as a crucial means of intercellular communication. In the current study, we focused on the therapeutic effects of human Wharton-Jelly MSCs derived microvesicles (hWJMSC-MVs) in renal ischemia/reperfusion injury and its potential mechanisms.MethodsMVs isolated from conditioned medium were injected intravenously in rats immediately after ischemia of the left kidney for 60 minutes. The animals were sacrificed at 24 hours, 48 hours and 2 weeks after reperfusion. The infiltration of inflammatory cells was identified by the immunostaining of CD68+ cells. ELISA was employed to determine the inflammatory factors in the kidney and serum von Willebrand Factor (VWF). Tubular cell proliferation and apoptosis were identified by immunostaining. Renal fibrosis was assessed by Masson’s tri-chrome straining and alpha-smooth muscle actin (α-SMA) staining. The CX3CL1 expression in the kidney was measured by immunostaining and Western blot, respectively. In vitro, human umbilical vein endothelial cells were treated with or without MVs for 24 or 48 hours under hypoxia injury to test the CX3CL1 by immunostaining and Western blot.ResultsAfter administration of hWJMSC-MVs in acute kidney injury (AKI) rats, renal cell apoptosis was mitigated and proliferation was enhanced, inflammation was also alleviated in the first 48 hours. MVs also could suppress the expression of CX3CL1 and decrease the number of CD68+ macrophages in the kidney. In the late period, improvement of renal function and abrogation of renal fibrosis were observed. In vitro, MVs could down-regulate the expression of CX3CL1 in human umbilical vein endothelial cells under hypoxia injury at 24 or 48 hours.ConclusionsA single administration of MVs immediately after ischemic AKI could ameliorate renal injury in both the acute and chronic stage, and the anti-inflammatory property of MVs through suppression of CX3CL1 may be a potential mechanism. This establishes a substantial foundation for future research and treatment.
In this study, a method was developed to estimate the forest biomass of China based on the relationship between stand biomass and volume. Biomass–volume relationships were quantified for all the main forest types in China using 758 sets of data obtained from direct field measurements. These relationships were used to convert volume measurements into total biomass values (above‐ and belowground dry masses) based on 1984–1988 forest inventory data for China. The latter had been compiled from more than 250000 permanent and temporary field plots across the country. This data contained information on forest area and timber volume for each age class and site class for all forest types at the provincial level. As a result, the total forest biomass of China was estimated as 9103 Tg (1 Tg = 1012 g), with 8592, 326, and 185 Tg from forests, special product plantations, and bamboo forests, respectively. The area‐weighted mean biomass density was 84 Mg/ha (1 Mg = 106 g). For comparison, two additional estimates, one based on the mean biomass density method and another based on the mean ratio of biomass to stem volume, were also derived. Compared to the biomass–volume relationship method, the mean biomass density method considerably overestimated the forest biomass of China (by 59.6%), while the mean ratio of biomass to stem volume method slightly underestimated it (by 12.1%). Despite the small forest biomass value due to a low forest cover, the area‐weighted mean biomass density was comparable to those of other regions in the middle and high latitudes except in the United States. We believe that our study provided not only an appropriate estimate of forest biomass for China, but also an improved methodology for estimating forest biomass at the regional, national, and global level.
This review focuses on the development of magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.