Abstract. The purpose of this article is to summarize our recent progress in high-order and high accurate CFD methods for flow problems with complex grids as well as to discuss the engineering prospects in using these methods. Despite the rapid development of high-order algorithms in CFD, the applications of high-order and high accurate methods on complex configurations are still limited. One of the main reasons which hinder the widely applications of these methods is the complexity of grids. Many aspects which can be neglected for low-order schemes must be treated carefully for high-order ones when the configurations are complex. In order to implement highorder finite difference schemes on complex multi-block grids, the geometric conservation law and block-interface conditions are discussed. A conservative metric method is applied to calculate the grid derivatives, and a characteristic-based interface condition is employed to fulfil high-order multi-block computing. The fifth-order WCNS-E-5 proposed by Deng [9, 10] is applied to simulate flows with complex grids, including a double-delta wing, a transonic airplane configuration, and a hypersonic X-38 configuration. The results in this paper and the references show pleasant prospects in engineering-oriented applications of high-order schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.