The lobula giant movement detector (LGMD) is the movement-sensitive, wide-field visual neuron positioned in the third visual neuropile of lobula. LGMD neuron can anticipate collision and trigger avoidance efficiently owing to the earlier occurring firing peak before collision. Vision chips inspired by the LGMD have been successfully implemented in very-large-scale-integration (VLSI) system. However, transistor-based chips and single devices to simulate LGMD neurons make them bulky, energy-inefficient and complicated. The devices with relatively compact structure and simple operation mode to mimic the escape response of LGMD neuron have not been realized yet. Here, the artificial LGMD visual neuron is implemented using light-mediated threshold switching memristor. The non-monotonic response to light flow field originated from the formation and break of Ag conductive filaments is analogue to the escape response of LGMD neuron. Furthermore, robot navigation with obstacle avoidance capability and biomimetic compound eyes with wide field-of-view (FoV) detection capability are demonstrated.
Nanoporous structures constructed by small molecular components exhibited vigorous materials potentials. While maintianing uniform porosity and functional properties, more applicable processing methods for the solid powders need to be considered and the improvement of binding interactions represents a preferable approach for structural flexibility. Here, by combining ionic interaction and host-guest inclusion, we constructed flexible supramolecular frameworks composing of inorganic polyanionic clusters, cationic organic hosts, and a bridging guest. The formed layer framework structure assemblies grew into nano-fibers and then supramolecular gels, donating highly convenient processability to porous materials. A simple spin-coating generated a new type of liquid separation membranes which showed structural stability for many liquids. The surface properties can be facilely modulated via filling a joystick liquid and then a hydrophilic/hydrophobic liquid into the porous frameworks, providing in-situ consecutive switchings for cutting liquids. This strategy extends the potential of flexible supramolecular frameworks for responsive materials in the laboratory and in industry.
A strategy integrating near infrared (NIR) photothermal and catalytic effects within one active center beyond ultraviolet and visible light is proposed without the combination of separated photothermal transformation components. A giant polyoxomolybdate, which has high NIR photothermal conversion efficiency, is selected as the model catalyst, while a cationic β-cyclodextrin is used to cover its negatively charged surface electrostatically. Under NIR light radiation, the designed catalyst increases catalytic activity of cyclohexene oxidation under O2 atmosphere in water. The conversion reaches about pentaploid of the reaction without NIR radiation. By excluding heating effect from the external heater at the same temperature, about twice as much enhancement, which can be attributed to the sole photothermal action, is still observed. While the catalytic center is shielded by the organic porous layer, the surface cavity allows the integrated catalyst to conduct a selective catalysis by screening the molecules in size over the surface channel.
Memristor‐based reservoir computing systems represent an attractive approach in processing the time‐series information with a low training cost, in a range of fields from finance to engineering. Previous investigations have identified the charming potential of organic devices for next‐generation memory devices. However, the structural inhomogeneity and wide energy bandgap of most organic polymers usually lead to low‐yield and high operation power microelectronic devices, that permit their further application in neuromorphic computing. Herein, an organic‐inorganic hybrid memristor that can be conveniently processed into crossbar devices with tolerable yield via spin‐coating is shown. The doped inorganic polyoxometalate (POM) clusters via supramolecular assembly strategy not only act as the charge trapping modules but also assist the formation of conductive filaments due to their delocalized electrostatic adsorption property. With the dynamic short‐term memory property, the designed memristor devices can be used as a reservoir framework to process temporal information directly. A smaller reservoir with 100 memristors can be used for the recognition of emotion patterns efficiently. This strategy demonstrates the unique role of POM in developing low‐power and repeated memristors, which provides a new material platform to design advanced function memristors for neuromorphic computing.
Supramolecular frameworks driven by intermolecular interactions represent a new type of porous materials differing from those driven by covalent or coordination bonding. The intermolecular interaction-induced flexible assembly structures display unique advantages in material processing, structure stimuli response, and recycling. In this work, a two-dimensional (2D) supramolecular ionic framework (SIF) was constructed through the initial ionic interaction between the host cation and polyoxometalate polyanion and then the host–guest inclusion of the formed host ionic complex with a four-arm porphyrin guest molecule following a [2+4] type reaction. Several prepared framework monolayers bearing an orthometric grid structure constituted a nanosheet-like assembly with flexibility and exhibited processability, which provided feasibility for the further preparation of separation membranes via a simple suction procedure of their dispersed suspensions in mixed solvents. The nanofiltration based on the uniform square pores under a slightly reduced pressure successfully achieved precise separation of several types of nanoparticles and molecular clusters in wide distribution at a cutting off value as small as 2.2 nm. These results also implied the potential of the present strategy for more separations at a molecular level and very fine nanoscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.