Summary Various lineages of ammonia‐oxidizing archaea (AOA) are present in deep waters, but the mechanisms that determine ecotype formation are obscure. We studied 18 high‐quality genomes of the marine group I AOA lineages (alpha, gamma and delta) from the Mariana and Ogasawara trenches. The genomes of alpha AOA resembled each other, while those of gamma and delta lineages were more divergent and had even undergone insertion of some phage genes. The instability of the gamma and delta AOA genomes could be partially due to the loss of DNA polymerase B (polB) and methyladenine DNA glycosylase (tag) genes responsible for the repair of point mutations. The alpha AOA genomes harbour genes encoding a thrombospondin‐like outer membrane structure that probably serves as a barrier to gene flow. Moreover, the gamma and alpha AOA lineages rely on vitamin B12‐independent MetE and B12‐dependent MetH, respectively, for methionine synthesis. The delta AOA genome contains genes involved in uptake of sugar and peptide perhaps for heterotrophic lifestyle. Our study provides insights into co‐occurrence of cladogenesis and anagenesis in the formation of AOA ecotypes that perform differently in nitrogen and carbon cycling in dark oceans.
Summary The low temperature and elevated hydrostatic pressure in hadal trenches at water depths below 6000 m render sample collection difficult. Here, in situ hadal water microbial samples were collected from the Mariana Trench and analysed. The hadal microbial communities at different depths were revealed to be consistent and were dominated by heterotrophic Marinimicrobia. Thirty high‐quality metagenome‐assembled genomes (MAGs) were retrieved to represent the major hadal microbes affiliated with 12 prokaryotic phyla. Most of the MAGs were newly reported and probably derived from novel hadal inhabitants as exemplified by a potentially new candidate archaeal phylum in the DPANN superphylum. Metabolic reconstruction indicated that a great number of the MAGs participated in nitrogen and sulfur cycling, in which the nitrification process was driven sequentially by Thaumarchaeota and Nitrospirae and sulfur oxidization by Rhodospirillales in the Alphaproteobacteria class. Moreover, several groups of hadal microbes were revealed to be potential carbon monoxide oxidizers. Metatranscriptomic result highlighted the contribution of Chloroflexi in degrading recalcitrant dissolved organic matter and Marinimicrobia in extracellular protein decomposition. The present work provides an in‐depth view on the hadal microbial communities regarding their endemism and element cycles.
Microbial communities in hadal sediments are least explored in hadal zone (>6,000 m), especially in the Challenger Deep with high pressure (∼110 M pa at the bottom). In this study, we investigated the microbial communities in the sediments of the slope and trench-axis bottom of the Challenger Deep in the Mariana Trench. Classification of the reads of the 16S rRNA gene amplicons showed vertical distribution of prokaryotic microbial inhabitants from the surface to up to 60 centimeter below surface floor (cmbsf). The most dominant phyla were Proteobacteria, Chloroflexi, Actinobacteria, Planctomycetes and candidate phyla Patescibacteria and Marinimicrobia. Distinct dominant groups in the microbial communities were observed in trench-axis sediment (water depth >8,600 m), compared to the slopes of the Challenger Deep. A sampling site at the northern slope was enriched with archaea from mesophilic Euryarchaeota Marine Group II (MGII) as a biomarker of specific geochemical setting. Among archaeal community, Thaumarchaeota represented by Nitrosopumilus were dominant in the upper layers and diminished drastically in the deeper layers. “Ca. Woesearchaeota”, however, became the dominant group in the deeper layers. Overall, our study provides a better understanding on the pattern of the microbial communities in the deepest hadal sediments on Earth, and highlights the extraordinary diversity still waiting to be discovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.