To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.Oceans cover approximately 71% of the Earth's surface and harbour most of the phylum diversity of the animal kingdom. Understanding marine biodiversity and its evolution remains a major challenge. The Pacific oyster C. gigas (Thunberg, 1793) is a marine bivalve belonging to the phylum Mollusca, which contains the largest number of described marine animal species 1 . Molluscs have vital roles in the functioning of marine, freshwater and terrestrial ecosystems, and have had major effects on humans, primarily as food sources but also as sources of dyes, decorative pearls and shells, vectors of parasites, and biofouling or destructive agents. Many molluscs are important fishery and aquaculture species, as well as models for studying neurobiology, biomineralization, ocean acidification and adaptation to coastal environments under climate change 2,3 . As the most speciose member of the Lophotrochozoa, phylum Mollusca is central to our understanding of the biology and evolution of this superphylum of protostomes.As sessile marine animals living in estuarine and intertidal regions, oysters must cope with harsh and dynamically changing environments. Abiotic factors such as temperature and salinity fluctuate wildly, and toxic metals and desiccation also pose serious challenges. Filter-feeding oysters face tremendous exposure to microbial pathogens. Oysters do have a notable physical line of defence against predation and desiccation in the formation of thick calcified shells, a key evolutionary innovation making molluscs a successful group. However, acidification of the world's oceans by uptake of anthropogenic carbon dioxide poses a potentially serious threat to this ancient adaptation 4 . Understanding biomineralization and molluscan shell formation is, thus, a major area of interest 5 . Crassostrea gigas is also an interesting model for developmental biology owing to its mosaic development with typical molluscan stages, including trochophore and veliger larvae and metamorphosis.A complete genome sequence of C. gigas would enable a more th...
For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.