This paper deals with the stabilization problem of first-order hyperbolic partial differential equations (PDEs) with spatial-temporal actuation over the full physical domains. We assume that the interior actuator can be decomposed into a product of spatial and temporal components, where the spatial component satisfies a specific ordinary differential equation (ODE). A Volterra integral transformation is used to convert the original system into a simple target system using the backstepping-like procedure. Unlike the classical backstepping techniques for boundary control problems of PDEs, the internal actuation can not eliminate the residual term that causes the instability of the open-loop system. Thus, an additional differential transformation is introduced to transfer the input from the interior of the domain onto the boundary. Then, a feedback control law is designed using the classic backstepping technique which can stabilize the first-order hyperbolic PDE system in a finite time, which can be proved by using the semigroup arguments. The effectiveness of the design is illustrated with some numerical simulations.
Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems.
In this paper, we study the optimal time for a time optimal control problem (P), governed by an internally controlled semi-linear heat equation. By projecting the original problem via the finite element method, we obtain another time optimal control problem (P h ) governed by a semi-linear system of ordinary differential equations. Here, h is the mesh sizes of the finite element spaces. The purpose of this study is to approach the optimal time for the problem (P) through the optimal time for the problem (P h ). We obtain error estimates between the optimal times in terms of h. MSC: 35K05; 49J20
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.