Brown Planthopper (BPH, Nilaparvata lugens (Stål)) is one of the most serious pests of rice in both temperate and tropical regions of East and South Asia and has become especially problematic over the past few years. In order to analyze the effect of the change of rice cropping system on the population dynamics of BPH, field surveys of the occurrence and distribution of BPH were performed and other relevant data, including light trap data and ovary dissection data were collected in nearly 40 Chinese counties encompassing six provinces (or municipalities), including Hainan, Guangxi, Anhui, Shanghai, Fujian and Guangdong from April to October in 2007.The mixed planting areas of single- and double-cropping rice in China include Hubei, South and Central Anhui, North Hunan, and North Jiangxi. In these areas, double-cropping rice has now been greatly reduced and single-cropping rice has been rapidly increasing since 1997. The surveys revealed that when the immigration peak of BPH occurred in June and July, the single-cropping rice was at the tillering to booting stage and fit for BPH, but early rice had already matured and most of late rice had not yet been transplanted. BPH immigrants from southern rice areas prefer to inhabit and breed in single-cropping rice paddies. Moreover, farming activities between early rice and late rice interrupted the continuous growth of BPH populations in double-cropping rice paddies. As a result, in comparison with data collected 30 years ago, the spatiotemporal dynamics and migration patterns of BPH have dramatically changed in the lower-middle reaches of the Yangtze River. In the mixed planting areas, due to their high suitability, the BPH population in single-cropping rice grew so quickly that it caused serious local damage and there was mass emigration of macropterous progeny to the Yangtze River Delta in late August and early September.Global warming may also affect BPH populations, where results suggest steadily warmer autumns have occurred from the 1990s on, with such conditions gradually the norm. The combination of 'cooler summer' and 'warmer autumn' are conditions known to promote outbreaks of BPH in the lower-middle reaches of the Yangtze River. Immigrant BPH arrivals in late August and September now cause serious damage to late-maturing mid-season rice and late rice in the lower-middle reaches of the Yangtze River.
BACKGROUND Worker division of labor is predominant in social insects. The foraging (for) gene, which encodes cGMP‐dependent protein kinase (PKG), has been implicated in the regulation of behavioral transitions in honeybees, but information regarding its function in other social insects is scarce. RESULTS We investigated the role of the for (Sifor) gene in the red imported fire ant, Solenopsis invicta, and found that Sifor and PKG exhibited different expression patterns in different castes, body sizes, ages and tissues of fire ants, especially in foragers and nurses. Foragers displayed greater locomotor activity but showed no preference for larval or adult odors, whereas nurses showed lesser locomotor activity but had a strong preference for larval odors. We found that the expression of Sifor was significantly higher in the heads of foragers (compared to nurses). RNA interference‐mediated Sifor knockdown in foraging workers induced behavioral transition of foragers toward the nurse phenotype characterized by reduced locomotor activity and a stronger preference for larval odors. By contrast, treating nurses with 8‐Br‐cGMP, an activator of PKG, resulted in behavioral transition toward the forager phenotype characterized by higher locomotor activity but reduced preference for larval odors. CONCLUSION Our results suggest that Sifor plays a critical role in the behavioral transition between foragers and nurses of workers, which may be a promising target for RNAi‐based management of worker caste organization in S. invicta. © 2022 Society of Chemical Industry.
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), spread rapidly in Africa and Asia recently, causing huge economic losses in crop production. Fall armyworm caterpillars were first detected in South Korea and Japan in June 2019. Here, the migration timing and path for FAW into the countries were estimated by a trajectory simulation approach implementing the insect's flight behavior. The result showed that FAWs found in both South Korea and Japan were estimated to have come from eastern China by crossing the Yellow Sea or the East China Sea in 10–36 h in three series of migrations. In the first series, FAW moths that arrived on Jeju Island during 22–24 May were estimated to be from Zhejiang, Anhui and Fujian Provinces after 1–2 nights’ flights. In the second series, it was estimated that FAW moths landed in southern Korea and Kyushu region of Japan simultaneously or successively during 5–9 June, and these moths mostly came from Guangdong and Fujian Provinces. The FAW moths in the third series were estimated to have immigrated from Taiwan Province onto Okinawa Islands during 19–24 June. During these migrations, southwesterly low‐level jets extending from eastern China to southern Korea and/or Japan were observed in the northwestern periphery of the western Pacific Subtropical High. These results, for the first time, suggested that the overseas FAW immigrants invading Korea and Japan came from eastern and southern China. This study is helpful for future monitoring, early warning and the source control of this pest in the two countries.
Fall armyworm is recognized as one of most highly destructive global agricultural pests. In January 2020, it had first invaded Australia, posing a significant risk to its biosecurity, food security, and agricultural productivity. In this study, the migration paths and wind systems for the case of fall armyworm invading Australia were analyzed using a three-dimensional trajectory simulation approach, combined with its flight behavior and NCEP meteorological reanalysis data. The analysis showed that fall armyworm in Torres Strait most likely came from surrounding islands of central Indonesia on two occasions via wind migration. Specifically, fall armyworm moths detected on Saibai and Erub Islands might have arrived from southern Sulawesi Island, Indonesia, between January 15 and 16. The fall armyworm in Bamaga most likely arrived from the islands around Arafura Sea and Sulawesi Island of Indonesia, between January 26 and 27. The high risk period for the invasion of fall armyworm is only likely to have occurred in January–February due to monsoon winds, which were conducive to flight across the Timor Sea towards Australia. This case study is the first to confirm the immigration paths and timing of fall armyworm from Indonesia to Australia via its surrounding islands.
Background: Bactrocera dorsalis and B. correcta are economically important fruit fly pests of crops, vegetables, fruits, and nuts worldwide, especially in China. Nowadays in China, B. correcta is a second notorious pest of many fruits after B. dorsalis. Different botanicals have been tested against the B. dorsalis but in the case of B. correcta, no records were published. Methodology: This study evaluated the repellency of four botanicals (Seriphidium brevifolium, Piper nigrum, Azadirachta indica and quercetin) in acetone dilutions (5%, 2.5% and 1%) against the B. dorsalis and B. correcta at the laboratory conditions (25 ± 2 C, 60 ± 5% relative humidity, and a photoperiod of L:D 14:10 h). Results: The number of visits after 24-48 h, oviposition punctures, and pupae made by both species were lower on the treated mangoes in comparison to untreated mangoes. S. brevifolium, P. nigrum, A. indica and quercetin have significantly reduced the visits, ovipositional punctures, and pupae of both species. Among botanicals, the P. nigrum was the most effective repellent against B. correcta and as well as B. dorsalis. However, the harmful effects of these botanicals against natural enemies are still unknown. Fraceto LF. 2014. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances 32 (8):1550-1561
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.