Appling an electrochemical catalyst is an efficient strategy for inhibiting the shuttle effect and enhancing the S utilization of Li-S batteries. Carbonbased materials are the most common conductive agents and catalyst supports used in Li-S batteries, but the correlation between the diversity of hybridizations and sulfur reduction reaction (SRR) catalytic activity remains unclear. Here, by establishing two forms of carbon models, i.e., graphitic carbon (GC) and amorphous carbon (AC), we observe that the nitrogen atom doped in the GC possesses a higher local charge density and a lower Gibbs free energy towards the formation of polysulfides than in the AC. And the GC-based electrode consistently inherits considerably enhanced SRR kinetics and superior cycling stability and rate capability in Li-S batteries. Therefore, the function of carbon in Li-S batteries is not only limited as conductive support but also plays an unignorable contribution to the electrocatalytic activities of SRR.
Appling an electrochemical catalyst is an efficient strategy for inhibiting the shuttle effect and enhancing the S utilization of Li-S batteries. Carbonbased materials are the most common conductive agents and catalyst supports used in Li-S batteries, but the correlation between the diversity of hybridizations and sulfur reduction reaction (SRR) catalytic activity remains unclear. Here, by establishing two forms of carbon models, i.e., graphitic carbon (GC) and amorphous carbon (AC), we observe that the nitrogen atom doped in the GC possesses a higher local charge density and a lower Gibbs free energy towards the formation of polysulfides than in the AC. And the GC-based electrode consistently inherits considerably enhanced SRR kinetics and superior cycling stability and rate capability in Li-S batteries. Therefore, the function of carbon in Li-S batteries is not only limited as conductive support but also plays an unignorable contribution to the electrocatalytic activities of SRR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.