No abstract
In the mouse, there is a large family of paralogous genes closely related to PRL. The objective of this report was to investigate the organization of the mouse PRL gene family locus. PRL family genes reside on chromosome 13 of the mouse genome. The PRL gene family members were localized to a series of overlapping bacterial artificial chromosome clones and arranged based on structural relationships. Additionally, several new members of the PRL gene family were identified. Placental lactogen I (PL-I) was found to be encoded by three closely related (>98% exon sequence identity) contiguous genes (termed: PL-Ialpha, PL-Ibeta, and PL-Igamma). Two previously unidentified mouse orthologs for members of the rat PRL family, PRL-like protein-I (PLP-I) and PLP-K were discovered, as were two new members of the PLP-C subfamily, PLP-Cgamma and PLP-Cdelta, and two new entirely unique members of the PRL family, PLP-N and PLP-O. Amino acid sequences predicted from the latter two genes most closely resembled proliferin-related protein. Each of the nine newly discovered genes is expressed in trophoblast cells of the mouse placenta in a gestationally specific pattern. In summary, elucidation of the mouse PRL gene family locus provides new insights into the expansion of the mouse PRL family and new tools for studying the genetics and biology of its members.
Autophagy is important for liver homeostasis, and the deficiency leads to injury, inflammation, ductular reaction (DR), fibrosis, and tumorigenesis. It is not clear how these events are mechanistically linked to autophagy deficiency. Here, we reveal the role of high-mobility group box 1 (HMGB1) in two of these processes. First, HMGB1 was required for DR, which represents the expansion of hepatic progenitor cells (HPCs) implicated in liver repair and regeneration. DR caused by hepatotoxic diets (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] or choline-deficient, ethionine-supplemented [CDE]) also depended on HMGB1, indicating that HMGB1 may be generally required for DR in various injury scenarios. Second, HMGB1 promoted tumor progression in autophagy-deficient livers. Receptor for advanced glycation end product (RAGE), a receptor for HMGB1, was required in the same two processes and could mediate the proliferative effects of HMBG1 in isolated HPCs. HMGB1 was released from autophagy-deficient hepatocytes independently of cellular injury but depended on NRF2 and the inflammasome, which was activated by NRF2. Pharmacological or genetic activation of NRF2 alone, without disabling autophagy or causing injury, was sufficient to cause inflammasome-dependent HMGB1 release. In conclusion, HMGB1 release is a critical mechanism in hepatic pathogenesis under autophagy-deficient conditions and leads to HPC expansion as well as tumor progression.
In our published work, we reported that HMGB1 is actively released from autophagy-deficient hepatocytes via a pathway from NRF2 to inflammasomes to promote ductular reaction, hepatic progenitor cell expansion, and tumorigenesis. We based our conclusions on multiple lines of evidence. Release of HMGB1 from autophagy-deficient hepatocytes was documented by immunoblotting, immunostaining, and ELISA analysis in different age groups of autophagy-deficient mice. The release of HMGB1 through an active mechanism is supported by kinetics analysis that shows tissue injury can be separated from the release process and by pharmacological and genetic analyses showing that the molecular elements of NRF2 and CASPASE 1 are required. The impact of HMGB1 on ductular reaction and tumor progression was also documented by both in vivo and in vitro evidence using knockout mice, cell fractionation, and transcriptional analysis. Figure 1G showed the results of an analysis of HMGB1 isoforms by mass spectrometry that was undertaken in a separate laboratory by Daniel J. Antoine. In February 2019, we learned that these data were likely compromised. We contacted the journal, and the Editorial Board gave us permission to correct the study. In the corrected version, all conclusions based on Figure 1G have been removed, and the journal has published an online version of the original article with the unreliable statements crossed out and the modified text highlighted in red (Supplemental File, Redaction). Figure 1G only suggested the formation of the released HMGB1, but carried no significance as to the releasing mechanisms and the functional significance of HMGB1 release in autophagy-deficient conditions. We thus believe that the major conclusions of the study on the releasing mechanism and functional significance of HMGB1 in autophagy-deficient conditions are independent of Figure 1G and are accurate and that the corrected paper is reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.