AIMTo investigate whether patients with refractory epilepsy and healthy infants differ in gut microbiota (GM), and how ketogenic diet (KD) alters GM.METHODSA total of 14 epileptic and 30 healthy infants were recruited and seizure frequencies were recorded. Stool samples were collected for 16S rDNA sequencing using the Illumina Miseq platform. The composition of GM in each sample was analyzed with MOTHUR, and inter-group comparison was conducted by R software.RESULTSAfter being on KD treatment for a week, 64% of epileptic infants showed an obvious improvement, with a 50% decrease in seizure frequency. GM structure in epileptic infants (P1 group) differed dramatically from that in healthy infants (Health group). Proteobacteria, which had accumulated significantly in the P1 group, decreased dramatically after KD treatment (P2 group). Cronobacter predominated in the P1 group and remained at a low level both in the Health and P2 groups. Bacteroides increased significantly in the P2 group, in which Prevotella and Bifidobacterium also grew in numbers and kept increasing.CONCLUSIONGM pattern in healthy infants differed dramatically from that of the epileptic group. KD could significantly modify symptoms of epilepsy and reshape the GM of epileptic infants.
Background Influenza A virus (IAV) has had the highest morbidity globally over the past decade. A growing number of studies indicate that the upper respiratory tract (URT) microbiota plays a key role for respiratory health and that a dysfunctional respiratory microbiota is associated with disease; but the impact of microbiota during influenza is understudied. Methods We recruited 180 children, including 121 IAV patients and 59 age-matched healthy children. Nasopharyngeal (NP) and oropharyngeal (OP) swabs were collected to conduct 16S rDNA sequencing and compare microbiota structures in different individuals. Results Both NP and OP microbiota in IAV patients differed from those in healthy individuals. The NP dominated genera in IVA patients, such as Moraxella, Staphylococcus, Corynebacterium, and Dolosigranulum, showed lower abundance than in healthy children. The Streptococcus significantly enriched in patients' NP and Phyllobacterium could be generally detected in patients' NP microbiota. The most abundant genera in OP microbiota showed a decline tendency in patients, including Streptococcus, Neisseria, and Haemophilus. The URT's bacterial concurrence network changed dramatically in patients. NP and OP samples were clustered into subgroups by different dominant genera; and NP and OP microbiota provided the precise indicators to distinguish IAV patients from healthy children. Conclusion This is the first respiratory microbiome analysis on pediatric IAV infection which reveals distinct NP and OP microbiota in influenza patients. It provides a new insight into IAV research from the microecology aspect and promotes the understanding of IAV pathogenesis.
In recent years, the morbidity of Mycoplasma pneumoniae pneumonia (MPP) has dramatically increased in China. An increasing number of studies indicate that an imbalance in the respiratory microbiota is associated with respiratory infection. We selected 28 hospitalized patients infected with M. pneumoniae and 32 healthy children. Nasopharyngeal (NP) and oropharyngeal (OP) swabs were collected from healthy children, whereas NP, OP and bronchoalveolar lavage (BAL) specimens were collected from patients. Microbiota analysis was performed on all microbial samples using 16 S ribosomal RNA (16 S rRNA) sequencing. The NP microbial samples in healthy children were divided into two groups, which were dominated by either Staphylococcus or mixed microbial components. The respiratory microbiota in pneumonia patients harbored a lower microbial diversity compared to healthy children, and both the NP and OP microbiota of patients differed significantly from that of healthy children. Hospitalized MPP children with a higher abundance of Mycoplasma in the BAL fluid (BALF) microbiota tended to suffer longer hospitalization lengths and higher peak fevers and serum C-reactive protein levels. Concordance analysis explained the succession of imbalanced NP microbiota to the OP and lung in diseased children. However, the association of the abundance of Mycoplasma in BALF microbiota with that in NP or OP microbiota varied among individuals, which suggested the sensitivity of BALF in MPP diagnostics, mirroring MPP severity.
The epidemic of erythromycin-resistant Bordetellapertussis with limited genome variation associated with pertussis resurgence in China, Expert Review of Vaccines,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.