Polymeric thin film composite (TFC) membranes have been proven promising for a wide range of separation applications. However, their development is significantly hindered by low permeance (below 8.0 L m −2 h −1 bar −1 ). Here, we report the fabrication of new films with nanoparticle-assembled structure via interfacial polymerization using quantum dots (QDs) as building blocks. The tailored QDs with hydrophobic and hydrophilic regions permit cross-linking into nanoparticleassembled defect-free thin films. Significantly, amphipathic QDs show good affinity to polar and nonpolar molecules, facilitating their fast dissolution into film. Meanwhile, the nanopores (∼1.4 nm) render fleet diffusion of molecules, which highly promotes the transfer of molecules within the film. This synergetic effect endows the resultant TFC membrane with high permeance, over 2 orders of magnitude higher than the conventional polyamide films. The permeances for acetonitrile and n-hexane reach 46.9 and 50.8 L m −2 h −1 bar −1 , respectively. We demonstrate that films fabricated by hydrophilic and hydrophobic QDs exhibit different molecular transfer mechanisms, and the corresponding model equations are established. The film fabricated by amphipathic QDs shows a combination transfer mechanism of the two models. Furthermore, those QD-based TFC membranes display favorable structural and operational stability, holding promise for industrial separation applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.