We consider the long-time behavior for stochastic 2D nematic liquid crystals flows with the velocity field perturbed by an additive noise. The presence of the noises destroys the basic balance law of the nematic liquid crystals flows, so we can not follow the standard argument to obtain uniform a priori estimates for the stochastic flow even in the weak solution space under non-periodic boundary conditions. To overcome the difficulty we use a new technique some kind of logarithmic energy estimates to obtain the uniform estimates which improve the previous result for the orientation field that grows exponentially w.r.t.time t. Considering the existence of random attractor, the common method is to derive uniform a priori estimates in functional space which is more regular than the solution space. We can follow the common method to prove the existence of random attractor in the weak solution space. However, if we consider the existence of random attractor in the strong solution space, it is very difficult and very complicated for such highly nonlinear stochastic system with no basic balance law and non-periodic boundary conditions. Here, we use a compactness arguments of the stochastic flow and regularity of the solutions to the stochastic model to obtain the existence of the random attractor in the strong solution space, which implies the support of the invariant measure lies in a more regular space. As far as we know, it is the first article to attack the long-time behavior of stochastic nematic liquid crystals.
In this paper a stochastic Burgers system in Itô form is considered. The global well-posedness is proved. The proof relies on energy estimates for the velocity. A maximum principle of deterministic parabolic equations is used to overcome the difficulties arising from higher order norms. The methods and results can be applied to other parabolic equations with additive white noise such as stochastic reaction diffusion equations.
The previous works focus on the uniqueness for the initial-value problems of stochastic primitive equations. Uniqueness for the initial-value problems means that if the two initial conditions are the same, then the two solutions coincide with each other. However there is no work to answer what will happen to the solutions if the two initial conditions are different. This problem for the stochastic three dimensional primitive equations is addressed by the backward uniqueness established in this article. The backward uniqueness means that if two solutions intersect at time t > 0, then they are equal everywhere on the interval (0, t). In other words, given two different initialvalue conditions, the corresponding two solutions will never cross in the future. Hence this article can be viewed as a further study of the dependence of the solutions on the initial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.