This work studies retinal image registration in the context of the National Institutes of Health (NIH) Early Treatment Diabetic Retinopathy Study (ETDRS) standard. The ETDRS imaging protocol specifies seven fields of each retina and presents three major challenges for the image registration task. First, small overlaps between adjacent fields lead to inadequate landmark points for feature-based methods. Second, the non-uniform contrast/intensity distributions due to imperfect data acquisition will deteriorate the performance of area-based techniques. Third, high-resolution images contain large homogeneous nonvascular/texureless regions that weaken the capabilities of both feature-based and area-based techniques. In this work, we propose a hybrid retinal image registration approach for ETDRS images that effectively combines both area-based and feature-based methods. Four major steps are involved. First, the vascular tree is extracted by using an efficient local entropy-based thresholding technique. Next, zeroth-order translation is estimated by maximizing mutual information based on the binary image pair (area-based). Then image quality assessment regarding the ETDRS field definition is performed based on the translation model. If the image pair is accepted, higher-order transformations will be involved. Specifically, we use two types of features, landmark points and sampling points, for affine/quadratic model estimation. Three empirical conditions are derived experimentally to control the algorithm progress, so that we can achieve the lowest registration error and the highest success rate. Simulation results on 504 pairs of ETDRS images show the effectiveness and robustness of the proposed algorithm.
In this paper, we propose an articulated and generalized Gaussian kernel correlation (GKC)-based framework for human pose estimation. We first derive a unified GKC representation that generalizes the previous sum of Gaussians (SoG)-based methods for the similarity measure between a template and an observation both of which are represented by various SoG variants. Then, we develop an articulated GKC (AGKC) by integrating a kinematic skeleton in a multivariate SoG template that supports subject-specific shape modeling and articulated pose estimation for both the full body and the hands. We further propose a sequential (body/hand) pose tracking algorithm by incorporating three regularization terms in the AGKC function, including visibility, intersection penalty, and pose continuity. Our tracking algorithm is simple yet effective and computationally efficient. We evaluate our algorithm on two benchmark depth data sets. The experimental results are promising and competitive when compared with the state-of-the-art algorithms.
This paper presents a novel feature extraction algorithm based on the local binary features for automatic target recognition (ATR) in infrared imagery. Since the inception of the local binary pattern (LBP) and local ternary pattern (LTP) features, many extensions have been proposed to improve their robustness and performance in a variety of applications. However, most attentions were paid to improve local feature extraction with little consideration on the incorporation of global or regional information. In this work, we propose a new concave-convex partition (CCP) strategy to improve LBP and LTP by dividing local features into two distinct groups, i.e., concave and convex, according to the contrast between local and global intensities. Then two separate histograms built from the two categories are concatenated together to form a new LBP/LTP code that is expected to better reflect both global and local information. Experimental results on standard texture images demonstrate the improved discriminability of the proposed features and those on infrared imagery further show that the proposed features can achieve competitive ATR results compared with state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.