The artificial potential field approach provides a simple and effective motion planner for robot navigation. However, the traditional artificial potential field approach in practice can have a local minimum problem, i.e., the attractive force from the target position is in the balance with the repulsive force from the obstacle, such that the robot cannot escape from this situation and reach the target. Moreover, the moving object detection and avoidance is still a challenging problem with the current artificial potential field method. In this paper, we present an improved version of the artificial potential field method, which uses a dynamic window approach to solve the local minimum problem and define a danger index in the speed field for moving object avoidance. The new danger index considers not only the relative distance between the robot and the obstacle, but also the relative velocity according to the motion of the moving objects. In this way, the robot can find an optimized path to avoid local minimum and moving obstacles, which is proved by our experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.