BackgroundThe aim of this study was to assess a radiomic scheme that combines image features from digital mammography and dynamic contrast-enhanced MRI to improve classification accuracy of nonpalpable breast lesion (NBL) with Breast Imaging-Reporting and Data System (BI-RADS) 3–5 microcalcifications-only in mammography.Material/MethodsThis retrospective study was approved by the Internal Research Review and Ethical Committee of our hospital. We included 81 patients who underwent a three-dimensional digital breast X-ray wire positioning for local resection between October 2012 and November 2016. All patients underwent breast MRI and mammography before the treatment, and all obtained pathological confirmation. According to the pathological results, 41 patients with benign lesions were assigned to the benign group and 40 patients with malignant lesions were assigned to the malignant group. We used the random forest algorithm to select significant features and to test the single and multimodal classifiers using the Leave-One-Out-Cross-Validation method. An area under the receiver operating characteristic curve was also used to evaluate its discriminating performance.ResultsThe multimodal classifier achieved AUC of 0.903, with a sensitivity of 82.5% and a specificity of 80.48%, which was better than any single modality.ConclusionsMultimodal radiomics classification shows promising power in discriminating malignant lesions from benign lesions in NBL patients with BI-RADS 3–5 microcalcifications-only in mammography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.