Proper physiological function of the ovaries is very important for the entire female reproductive system and overall health. Reactive oxygen species (ROS) are generated as by-products during ovarian physiological metabolism, and antioxidants are indicated as factors that can maintain the balance between ROS production and clearance. A disturbance in this balance can induce pathological consequences in oocyte maturation, ovulation, fertilization, implantation, and embryo development, which can ultimately influence pregnancy outcomes. However, our understanding of the molecular and cellular mechanisms underlying these physiological and pathological processes is lacking. This article presents up-to-date findings regarding the effects of antioxidants on the ovaries. An abundance of evidence has confirmed the various significant roles of these antioxidants in the ovaries. Some animal models are discussed in this review to demonstrate the harmful consequences that result from mutation or depletion of antioxidant genes or genes related to antioxidant synthesis. Disruption of antioxidant systems may lead to pathological consequences in women. Antioxidant supplementation is indicated as a possible strategy for treating reproductive disease and infertility by controlling oxidative stress (OS). To confirm this, further investigations are required and more antioxidant therapy in humans has to been performed. BackgroundReactive oxygen species (ROS) are formed during normal metabolism of oxygen and are produced as by-products of aerobic metabolism. A certain amount of ROS production is necessary for gene expression [1], cell signalling [2,3], and redox homeostasis. Scavenging antioxidant systems are indispensable for maintaining an adequate amount of ROS. The balance between the generation and elimination of ROS is a key factor required for almost every metabolic function in mammals. Maintenance of this balance is an important constitutive process and has a particular influence on cell proliferation, differentiation, apoptosis, and death [4]. When ROS production overwhelms the scavenging ability of antioxidants, oxidative stress (OS) occurs. Unfortunately, disruption of this balance can easily result from either an increase in the concentration of ROS or a decrease in scavenging ability. Excessive ROS levels are harmful to the human body and can result in accumulation of oxidative damage in distinct subcellular compartments that exert very toxic effects on DNA, proteins, and lipids. ROS-mediated damage can ultimately influence physiological functions, such as cell signalling pathways and redox-sensitive signalling pathways, and lead to pathological conditions [5].Regarding the female reproductive system, ROS and antioxidants have been recognized as key factors involved in ovarian physiological metabolism. Many studies have investigated the presence of antioxidants and their transcripts in the female reproductive tract [6][7][8]. Previous studies have reported that the balance between ROS and antioxidants greatly influences th...
SILC is a safe and feasible approach in selected patients. The main advantages are a better cosmetic result and less pain.
BackgroundCirculating tumor cells (CTCs) have been actively studied for their functions in hepatocellular carcinoma (HCC) recurrence. However, the relationship between circulating tumor cells subtypes and hepatocellular carcinoma recurrence is still unclear.MethodsCTCs were collected from the peripheral blood of 62 postoperative HCC patients. The CTCs were isolated with a filtration-based method. Multiplex fluorescence in situ hybridization was used to characterize the CTCs based on mRNA expression levels of epithelial and mesenchymal markers.ResultsOf the 62 HCC patients, 26 were diagnosed with early recurrence (ER) and 36 did not experience recurrence. Comparison between the recurrence group and the non-recurrence group showed the total number of CTCs, mesenchymal CTCs, and mixed CTCs in the recurrence group was significantly higher than in the non-recurrence group. Receiver operator characteristic (ROC) curve analysis was performed to define the positive cutoff values as follows: total number of CTCs ≥ 4, mesenchymal CTCs ≥ 1, and mixed CTCs ≥ 3. Analysis showed that portal vein tumor thrombus (hazard ratio [HR] = 2.905, P = 0.023) and mesenchymal CTC positivity (HR = 3.453, P = 0.007) were independent risk factors for ER. The correlation between the presence of mesenchymal CTCs and time to recurrence was further examined, and the results showed significantly shortened postoperative disease-free survival in patients positive for mesenchymal CTCs (P < 0.001).ConclusionsHCC patients with positive peripheral mesenchymal CTCs have a more serious risk of ER, which could be a potential biomarker in HCC prognosis monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.