We performed ab initio molecular dynamics simulations to investigate the initiation mechanisms and subsequent decompositions of a 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystal at initial decomposition temperature coupled with different pressures. The initial decomposition step of TATB was found to be the unimolecular intramolecular hydrogen transfer; moreover, this initiation mechanism is independent of the variation of the pressure.
We have performed ab initio molecular dynamics simulations to study coupling effects of temperature (534-873 K) and pressure (1-20 GPa) on the initiation mechanisms and subsequent chemical decompositions of nitramine explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). A new initiation decomposition mechanism of HMX was found to be the unimolecular C-H bond breaking, and this mechanism was independent of the coupling effects of different temperatures and pressures. The formed hydrogen radicals could promote subsequent decompositions of HMX. Subsequent decompositions were very sensitive to the pressure at low temperatures (534 and 608 K), while the temperature became the foremost factor that affected the decomposition at a high temperature (873 K) instead of the pressure. Our study may provide a new insight into understanding the coupling effects of the temperature and pressure on the initiation decomposition mechanisms of nitramine explosives.
We investigated the geometric and electronic structures and stability of high-energy metal metastable intermolecular composites (Al, Mg, Ti, and Zr)/CuO(111) between metal layers and a CuO(111) substrate by density functional theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.