Kernel hardness or texture, used to classify wheat (Triticum aestivum L.) into soft and hard classes, is a major determinant of milling and baking quality. Wheat genotypes in the soft class that are termed 'extra-soft' (with kernel hardness in the lower end of the spectrum) have been associated with superior end-use quality. In order to better understand the relationship between kernel hardness, milling yield, and various agronomic traits, we performed quantitative trait mapping using a recombinant inbred line population derived from a cross between a common soft wheat line and a genotype classified as an 'extra-soft' line. A total of 47 significant quantitative trait loci (QTL) (LOD ≥ 3.0) were identified for nine traits with the number of QTL affecting each trait ranging from three to nine. The percentage of phenotypic variance explained by these QTL ranged from 3.7 to 50.3%. Six QTL associated with kernel hardness and break flour yield were detected on chromosomes 1BS, 4BS, 5BS, 2DS, 4DS, and 5DL. The two most important QTL were mapped onto orthologous regions on chromosomes 4DS (Xbarc1118-Rht-D1) and 4BS (Xwmc617-Rht-B1). These results indicated that the 'extra-soft' characteristic was not controlled by the Hardness (Ha) locus on chromosome 5DS. QTL for eight agronomic traits occupied two genomic regions near semi-dwarf genes Rht-D1 on chromosome 4DS and Rht-B1 on chromosome 4BS. The clustering of these QTL is either due to the pleiotropic effects of single genes or tight linkage of genes controlling these various traits.
AbstractAir-stable broadband saturable absorbers (SAs) exhibit a promising application potential, and their preparations are also full of challenges. Palladium selenide (PdSe2), as a novel two-dimensional (2D) layered material, exhibits competitive optical properties including wide tunable bandgap, unique pentagonal atomic structure, excellent air stability, and so on, which are significant in designing air-stable broadband SAs. In our work, theoretical calculation of the electronic band structures and bandgap characteristics of PdSe2 are studied first. Additionally, PdSe2 nanosheets are synthesized and used for designing broadband SAs. Based on the PdSe2 SA, ultrafast mode-locked operations in 1- and 1.5-μm spectral regions are generated successfully. For the mode-locked Er-doped operations, the central wavelength, pulse width, and pulse repetition rate are 1561.77 nm, 323.7 fs, and 20.37 MHz, respectively. Meanwhile, in all normal dispersion regions, mode-locked Yb-doped fiber laser with 767.7-ps pulse width and 15.6-mW maximum average output power is also generated successfully. Our results fully reveal the capacity of PdSe2 as a broadband SA and provide new opportunities for designing air-stable broadband ultra-fast photonic devices.
MutS Homolog 1 (MSH1) encodes a plant-specific protein that functions in mitochondria and chloroplasts. We showed previously that disruption or suppression of the MSH1 gene results in a process of developmental reprogramming that is heritable and non-genetic in subsequent generations. In Arabidopsis, this developmental reprogramming process is accompanied by striking changes in gene expression of organellar and stress response genes. This developmentally reprogrammed state, when used in crossing, results in a range of variation for plant growth potential. Here we investigate the implications of MSH1 modulation in a crop species. We found that MSH1-mediated phenotypic variation in Sorghum bicolor is heritable and potentially valuable for crop breeding. We observed phenotypic variation for grain yield, plant height, flowering time, panicle architecture, and above-ground biomass. Focusing on grain yield and plant height, we found some lines that appeared to respond to selection. Based on amenability of this system to implementation in a range of crops, and the scope of phenotypic variation that is derived, our results suggest that MSH1 suppression provides a novel approach for breeding in crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.