Cryogenic vessels are widely used in many areas, such as liquefied natural gas (LNG), aerospace, and medical fields. A suitable filling method is one of the prerequisites for the effective use of cryogenic containers. In this study, the filling process for the sloshing condition of a liquid hydrogen storage tank is numerically simulated and analyzed by coupling the sloshing model and the phase-change model. The effects of different sloshing conditions during the filling process are investigated by changing the amplitude and frequency of the sloshing. Within the scope of this study, there is a critical value for the effect of sloshing conditions on the pressure curve during the filling process. The critical value corresponds to a frequency f equal to 3 Hz and an amplitude A equal to 0.03 m. According to the simulation results, when the sloshing exceeds the critical value, the internal pressure curve of the storage tank increases significantly. Under microgravity conditions, within the scope of this study, the pressure curve changes less than the normal gravity, even if the amplitude and frequency increase. The sloshing makes it easier for the liquid to spread along the wall during the filling process. This also further weakens the temperature stratification in the storage tank.
Interfacial friction heating is one of the leading heat generation mechanisms during the initial stage of ultrasonic plasticization of polymer pellets, which has a significant influence on the subsequent viscoelastic heating according to our previous study. The interfacial friction angle and contact area of polymer pellets are critical boundary conditions for the analysis of interfacial frictional heating of polymer pellets. However, the duration of the interfacial friction heating is extremely short in ultrasonic plasticization, and the polymer pellets are randomly distributed in the cylindrical barrel, resulting in the characterization of the distribution of the interfacial friction angle and contact area to be a challenge. In this work, the interfacial friction angle of the polymer pellets in the partially plasticized samples of polymethyl methacrylate (PMMA), polypropylene (PP), and nylon66 (PA66) were characterized by a super-high magnification lens zoom 3D microscope. The influence of trigger pressure, plasticizing pressure, ultrasonic amplitude, and vibration time on the interfacial friction angle and the contact area of the polymer pellets were studied by a single factor experiment. The results show that the compaction degree of the plasticized samples could be enhanced by increasing the level of the process parameters. With the increasing parameter level, the proportion of interfacial friction angle in the range of 0–10° and 80–90° increased, while the proportion in the range of 30–60° decreased accordingly. The proportion of the contact area of the polymer pellets was increased up to 50% of the interfacial friction area which includes the upper, lower, and side area of the cylindrical plasticized sample.
The acoustic melt stream velocity field, total force, and trajectory of fluorescent particles in the plasticizing chamber were analyzed using finite element simulation to investigate the acoustic streaming and mixing characteristics in ultrasonic plasticization micro-injection molding (UPMIM). The fluorescence intensity of ultrasonic plasticized samples containing thermoplastic polymer powders and fluorescent particles was used to determine the correlation between UPMIM process parameters and melt mixing characteristics. The results confirm that the acoustic streaming driven mixing occurs in ultrasonic plasticization and could provide similar shear stirring performance as the screw in traditional extrusion/injection molding. It was found that ultrasonic vibrations can cause several melt vortices to develop in the plasticizing chamber, with the melt rotating around the center of the vortex. With increasing ultrasonic amplitude, the melt stream velocity was shown to increase while retaining the trace, which could be altered by modulating other parameters. The fluorescent particles are subjected to a two-order-of-magnitude stronger Stokes drag force than the acoustic radiation force. The average fluorescence intensity was found to be adversely related to the distance from the sonotrodes’ end surface, and fluorescence particles were more equally distributed at higher parameter levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.